access icon free State of charge prediction of supercapacitors via combination of Kalman filtering and backpropagation neural network

Supercapacitors are increasingly applied to the field of electric vehicles. Although the state of charge (SOC) directly shows the remaining capacity of supercapacitors in an energy management system, vehicle drivers also require the changes of supercapacitors in the future for driving reference. How to predict SOC of supercapacitors has become a pressing problem. In order to solve the above problem, a method combining backpropagation (BP) neural network with the Kalman filtering algorithm is proposed to predict SOC in the future. The BP neural network inputs SOC estimated by the Kalman filtering algorithm as the training data to train network, and thereby being able to forecast the SOC in the future period. The algorithm is verified in simulations and experiments under the two conditions: NewYorkBus and NYCC, with the consideration of the influence of the length of training data and temperature. The results show the max absolute error during prediction at different lengths is under 6% in simulations and experiments. In addition, temperature has almost no effect on the prediction accuracy. The current research implies that this method can be applied to predict supercapacitors’ SOC in the future.

Inspec keywords: supercapacitors; electric vehicles; power engineering computing; neural nets; Kalman filters; backpropagation

Other keywords: supercapacitors; BP neural network; driving reference; NYCC; backpropagation neural network; energy management system; Kalman filtering algorithm; state-of-charge prediction; NewYorkBus; vehicle drivers; SOC prediction; training data

Subjects: Other power apparatus and electric machines; Digital signal processing; Transportation; Filtering methods in signal processing; Neural computing techniques; Other energy storage; Power engineering computing

References

    1. 1)
      • 24. Williard, N., Baek, D., Park, J.W., et al: ‘A life model for supercapacitors’, IEEE Trans. Dev. Mater. Reliab., 2015, 15, pp. 519528.
    2. 2)
      • 20. Chen, Q., Jiang, J., Liu, S., et al: ‘A novel sliding mode observer for state of charge estimation of EV lithium batteries’, J. Power Electron., 2016, 16, pp. 11311140.
    3. 3)
      • 15. Zheng, T., Gui, S., Li, X., et al: ‘SOC estimation scheme of super capacitor based on Calman filter’. Industrial Electronics and Applications (ICIEA), 2016.
    4. 4)
      • 16. Nadeau, A., Hassanalieragh, M., Sharma, G., et al: ‘Energy awareness for supercapacitors using Kalman filter state-of-charge tracking’, J. Power Sources, 2015, 296, pp. 383391.
    5. 5)
      • 5. Lajnef, W., Vinassa, J.M., Briat, O., et al: ‘Quantification of ageing of ultracapacitors during cycling tests with current profile characteristics of hybrid and electric vehicles applications’, IET Electr. Power Appl., 2007, 1, pp. 683689.
    6. 6)
      • 9. Song, H.S., Jung, J.B., Lee, B.H., et al: ‘Dynamic SOC compensation of an ultracapacitor module for a hybrid energy storage system’, J. Power Electron., 2009, 10, pp. 17.
    7. 7)
      • 4. Lidozzi, A., Solero, L., Napoli, A.D.: ‘Ultracapacitors equipped hybrid electric microcar’, IET Electr. Power Appl., 2010, 4, pp. 618628.
    8. 8)
      • 27. Zhang, L., Wang, Z., Sun, F., et al: ‘Online parameter identification of ultracapacitor models using the extended Kalman filter’, Energies, 2014, 7, pp. 32043217.
    9. 9)
      • 17. Chaoui, H., Ibe-Ekeocha, C.C., El Mejdoubi, A., et al: ‘State of charge estimation of LiFePO 4 batteries with temperature variations using neural networks’. 2016 IEEE 25th Int. Symp. Industrial Electronics (ISIE), 2016, pp. 286291.
    10. 10)
      • 14. Shen, X., Shen, T., Zha, X., et al: ‘State-of-charge estimation of super-capacitor using dual extended Kalman filter’. Control Conf., 2014, pp. 227232.
    11. 11)
      • 18. Zhang, L., Wang, Z., Hu, X., et al: ‘Residual capacity estimation for ultracapacitors in electric vehicles using artificial neural network’. World Congress of the Int. Federation of Automatic Control, 2014, pp. 38993904.
    12. 12)
      • 21. Bhangu, B.S., Bentley, P., Stone, D.A., et al: ‘State-of-charge and state-of-health prediction of lead-acid batteries for hybrid electric vehicles using non-linear observers’. European Conf. Power Electronics and Applications, 2005, pp. 10 pp.P.10.
    13. 13)
      • 29. He, W., Williard, N., Chen, C., et al: ‘State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation’, Int. J. Electr. Power Energy Syst., 2014, 62, pp. 783791.
    14. 14)
      • 26. Buller, S., Karden, E., Kok, D., et al: ‘Modeling the dynamic behavior of supercapacitors using impedance spectroscopy’. Conf. Record of the 2001 Industry Applications Conf.: Thirty-Sixth IAS Meeting, 2002, vol. 4, pp. 25002504.
    15. 15)
      • 28. Mariefrancoise, J.N., Gualous, H., Berthon, A.: ‘Supercapacitor thermal- and electrical-behaviour modelling using ANN’, IEE Proc. Electr. Power Appl., 2006, 153, pp. 255262.
    16. 16)
      • 19. Weigert, T., Tian, Q., Lian, K.: ‘State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks’, J. Power Sources, 2011, 196, pp. 40614066.
    17. 17)
      • 11. Chiang, C.-J., Yang, J.-L., Cheng, W.-C.: ‘Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter’, J. Power Sources, 2013, 234, pp. 234243.
    18. 18)
      • 7. Franke, T., Krems, J.F.: ‘Interacting with limited mobility resources: psychological range levels in electric vehicle use’, Transp. Res. A, Policy Pract., 2013, 48, pp. 109122.
    19. 19)
      • 13. Wang, Y., Liu, C., Pan, R., et al: ‘Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator’, Energy, 2017, 121, pp. 739750.
    20. 20)
      • 12. Nadeau, A., Sharma, G., Soyata, T.: ‘State-of-charge estimation for supercapacitors: a Kalman filtering formulation’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2014, pp. 21942198.
    21. 21)
      • 10. Yan, J., Xu, G., Qian, H., et al: ‘Robust state of charge estimation for hybrid electric vehicles: framework and algorithms’, Energies, 2010, 3, pp. 16541672.
    22. 22)
      • 25. Marie-Francoise, J.N., Gualous, H., Berthon, A.: ‘Supercapacitor thermal- and electrical-behaviour modelling using ANN’, IEE Proc. Electr. Power Appl., 2006, 153, pp. 255262.
    23. 23)
      • 2. Xing, Y., He, W., Pecht, M., et al: ‘State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures’, Appl. Energy, 2014, 113, pp. 106115.
    24. 24)
      • 3. Zheng, F., Xing, Y., Jiang, J., et al: ‘Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries’, Appl. Energy, 2016, 183, pp. 513525.
    25. 25)
      • 1. Liu, D., Luo, Y., Liu, J., et al: ‘Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm’, Neural Comput. Appl., 2014, 25, pp. 557572.
    26. 26)
      • 23. Mejdoubi, A.E., Oukaour, A., Chaoui, H., et al: ‘Prediction aging model for supercapacitor's calendar life in vehicular applications’, IEEE Trans. Veh. Technol., 2016, 65, pp. 42534263.
    27. 27)
      • 8. Neubauer, J., Wood, E.: ‘The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility’, J. Power Sources, 2014, 257, pp. 1220.
    28. 28)
      • 22. Cuadras, A., Romero, R., Ovejas, V.J.: ‘Entropy characterisation of overstressed capacitors for lifetime prediction’, J. Power Sources, 2016, 336, pp. 272278.
    29. 29)
      • 6. Subotic, I., Bodo, N., Levi, E., et al: ‘Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics’, IET Electr. Power Appl., 2016, 10, pp. 217229.
    30. 30)
      • 30. ‘Maxwell BC Series Ultracapacitor Datasheet’, Available at www.maxwell.com/products/ultracapacitors/docs/datasheet_bc_series_1017105.pdf, January 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0242
Loading

Related content

content/journals/10.1049/iet-epa.2017.0242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading