Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Investigation on synchronous reluctance machines with different rotor topologies and winding configurations

This study investigates the influence of rotor topologies and winding configurations on the electromagnetic performance of three-phase synchronous reluctance machines (SynRM) with different slot/pole number combinations, e.g. 12-slot/4-pole and 12-slot/8-pole. Transversally laminated synchronous reluctance rotors with both round flux barrier and angled flux barrier have been considered, as well as the doubly salient (DS) rotor as that used in switched reluctance machines. Both concentrated and distributed winding configurations are accounted for, i.e. single-layer and double-layer conventional and mutually coupled windings, as well as fully pitched winding. The machine performance in terms of d- and q-axis inductances, on-load torque, copper loss, and iron loss have been investigated using 2D finite-element analysis. With appropriate rotor topology, 12-slot/4-pole and 12-slot/8-pole machines with fully pitched and double-layer mutually coupled windings can achieve similar torque capacity, which are higher than the machines with other winding configurations. In addition, the synchronous reluctance machine with round flux barrier can have lower iron loss than DS reluctance machine under different working conditions. The prototypes of 12-slot/8-pole single layer and double layer, DS SynRM have been built to validate the predictions in terms of inductances and torques.

References

    1. 1)
      • 14. Li, G.J., Ojeda, J., Hlioui, S., et al: ‘Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating’, IEEE Trans. Magn., 2012, 48, (6), pp. 20252034.
    2. 2)
      • 6. Liang, X., Li, G., Ojeda, J., et al: ‘Comparative study of classical and mutually coupled switched reluctance motors using multiphysics finite-element modeling’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50665074.
    3. 3)
      • 22. Bianchi, N., Mahmoud, H., Bolognani, S.: ‘Fast synthesis of permanent magnet assisted synchronous reluctance motors’, IET Elec. Power Appl., 2016, 10, (5), pp. 312318.
    4. 4)
      • 18. Wang, K., Zhu, Z.Q., Ombach, G., et al: ‘Optimal slot/pole and flux-barrier layer number combinations for synchronous reluctance machines’. Int. Conf. EVER, 2013, pp. 18.
    5. 5)
      • 16. Zhu, Z.Q., Liu, X., Pan, Z.: ‘Analytical model for predicting maximum reduction levels of vibration and noise in switched reluctance machine by active vibration cancellation’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 3645.
    6. 6)
      • 13. Li, G.J., Ma, X.Y., Jewell, G.W., et al: ‘Influence of conduction angles on single-layer switched reluctance machines’, IEEE Trans. Magn., 2016, 52, (12), pp. 111.
    7. 7)
      • 21. Vagati, A., Pastorelli, M., Francheschini, G., et al: ‘Design of low-torque-ripple synchronous reluctance motors’, IEEE Trans. Ind. Appl., 1998, 34, (4), pp. 758765.
    8. 8)
      • 20. Moghaddam, R.R., Magnussen, F., Sadarangani, C.: ‘Theoretical and experimental reevaluation of synchronous reluctance machine’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 613.
    9. 9)
      • 3. Miller, T.J.E.: ‘Optimal design of switched reluctance motors’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 1527.
    10. 10)
      • 9. Reddy, P.B., El-Refaie, A.M., Huh, K.K., et al: ‘Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications’, IEEE Trans. Energy Convers., 2012, 27, (3), pp. 593602.
    11. 11)
      • 12. Spargo, C.M., Mecrow, B.C., Widmer, J.D., et al: ‘Application of fractional-slot concentrated windings to synchronous reluctance motors’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 14461455.
    12. 12)
      • 1. Staton, D.A., Miller, T.J.E., Wood, S.E.: ‘Maximising the saliency ratio of the synchronous reluctance motor’, Proc. Inst. Elect. Eng. Elect. Power Appl., 1993, 140, (4), pp. 249259.
    13. 13)
      • 19. Kolehmainen, J.: ‘Synchronous reluctance motor with form blocked rotor’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 450456.
    14. 14)
      • 8. Moghaddam, R.R., Gyllensten, F.: ‘Novel high-performance SynRM designmethod: an easy approach for a complicated rotor topology’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 50585065.
    15. 15)
      • 17. Pellegrino, G., Cupertino, F., Gerada, C.: ‘Barriers shapes and minimum set of rotor parameters in the automated design of Synchronous Reluctance machines’. Int. Conf. Electric Machines & Drives, 2013, pp. 12041210.
    16. 16)
      • 5. Ma, X.Y., Li, G.J., Jewell, G.W., et al: ‘Performance comparison of doubly salient reluctance machine topologies supplied by sinewave currents’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 40864096.
    17. 17)
      • 11. El-Refaie, A.M.: ‘Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 107121.
    18. 18)
      • 23. Guan, Y., Zhu, Z.Q., Afinowi, I.A.A., et al: ‘Design of synchronous reluctance and permanent magnet synchronous reluctance machines for electric vehicle application’. ICEMS, 2014, pp. 18531859.
    19. 19)
      • 15. Fiedler, J.O., Kasper, K.A., Doncker, R.W.D.: ‘Calculation of the acoustic noise spectrum of SRM using modal superposition’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 29392945.
    20. 20)
      • 4. Lipo, T.A.: ‘Synchronous reluctance machines- a viable alternative for AC drives’. Presented at the Proc. Wisconsin Electric Machines and Power Electronics Consortium, Madison, USA, 1991.
    21. 21)
      • 24. Li, G.J., Ojeda, J., Hoang, E., et al: ‘Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles’, IEEE Trans. Magn., 2011, 47, (4), pp. 839847.
    22. 22)
      • 10. El-Refaie, A.M., Jahns, T.M., Novotny, D.W.: ‘Analysis of surface permanent magnet machines with fractional-slot concentrated windings’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 3443.
    23. 23)
      • 2. Matsuo, T., Lipo, T.A.: ‘Rotor design optimization of synchronous reluctance machine’, IEEE Trans. Energy Convers., 1994, 9, (2), pp. 359365.
    24. 24)
      • 7. Ojeda, X., Mininger, X., Gabsi, M., et al: ‘Sinusoidal feeding for switched reluctance machine: application to vibration damping’. ICEM, 2008, pp. 14.
    25. 25)
      • 25. Zhu, Z.Q.: ‘A simple method for measuring cogging torque in permanent magnet machines’. IEEE Power & Energy Society General Meeting, 2009, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0199
Loading

Related content

content/journals/10.1049/iet-epa.2017.0199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address