Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Direct torque and flux control of interior permanent magnet synchronous machine in deep flux-weakening region

Direct torque and flux control (DTFC) is known for its reduced torque and flux ripples compared to the classical direct torque control scheme. It can drive an interior permanent magnet synchronous motor (IPMSM) in usual control regimes while satisfying current and voltage limits of the system. However, deep flux-weakening control of an IPMSM under DTFC has not been investigated as extensively, especially operation along the maximum torque per voltage (MTPV) trajectory in the torque-flux plane. This study proposes a simple and effective control method, which incorporates MTPV trajectory in the conventional flux-weakening algorithm of DTFC. Performance of an IPMSM drive is analysed when operated with the proposed control method.

References

    1. 1)
      • 8. Das, S.P., Gupta, R.K.: ‘Direct torque control (DTC) of interior permanent magnet synchronous motor (IPMSM) with and without speed/position sensors’. 2010 India Int. Conf. Power Electronics (IICPE), 2011, pp. 16.
    2. 2)
      • 21. Meyer, M., Grote, T., Bocker, J.: ‘Direct torque control for interior permanent magnet synchronous motors with respect to optimal efficiency’. European Conf. Power Electronics and Applications, 2007, 2007, pp. 19.
    3. 3)
      • 7. Buja, G.S., Kazmierkowski, M.P.: ‘Direct torque control of PWM inverter-fed AC motors – a survey’, IEEE Trans. Ind. Electron., 2004, 51, pp. 744757.
    4. 4)
      • 13. Gallegos-Lopez, G., Gunawan, F.S., Walters, J.E.: ‘Optimum torque control of permanent-magnet AC machines in the field-weakened region’, IEEE Trans. Ind. Appl., 2005, 41, pp. 10201028.
    5. 5)
      • 26. Nguyen, Q.K., Petrich, M., Roth-Stielow, J.: ‘Implementation of the MTPA and MTPV control with online parameter identification for a high speed IPMSM used as traction drive’. 2014 Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), 2014, pp. 318323.
    6. 6)
      • 10. Jahns, T.M.: ‘Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive’, IEEE Trans. Ind. Appl., 1987, IA-23, pp. 681689.
    7. 7)
      • 17. Ping-Yi, L., Wei-Ting, L., Shang-Wei, C., et al: ‘Infinite speed drives control with MTPA and MTPV for interior permanent magnet synchronous motor’. 40th Annual Conf. of the IEEE Industrial Electronics Society, IECON 2014, 2014, pp. 668674.
    8. 8)
      • 19. Foo, G., Sayeef, S., Rahman, M.F.: ‘Wide speed sensorless SVM direct torque controlled interior permanent magnet synchronous motor drive’. 34th Annual Conf. of IEEE Industrial Electronics, 2008, IECON 2008, 2008, pp. 14391444.
    9. 9)
      • 18. Rahman, M.F., Zhong, L., Khiang Wee, L.: ‘A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening’, IEEE Trans. Ind. Appl., 1998, 34, pp. 12461253.
    10. 10)
      • 2. Zordan, M., Vas, P., Rashed, M., et al: ‘Field-weakening in vector controlled and DTC PMSM drives, a comparative analysis’. Eighth Int. Conf. Power Electronics and Variable Speed Drives, 2000 (IEE Conf. Publ. No. 475), 2000, pp. 493499.
    11. 11)
      • 23. Inoue, Y., Ichiya, T., Morimoto, S., et al: ‘Wide-speed-range operation of DTC-based PMSM drive system using MTPF control’. 2014 Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE-ASIA), 2014, pp. 370375.
    12. 12)
      • 5. Zhong, L., Rahman, M.F., Hu, W.Y., et al: ‘Analysis of direct torque control in permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 1997, 12, pp. 528536.
    13. 13)
      • 1. Inoue, Y., Morimoto, S., Sanada, M.: ‘Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region’, IEEE Trans. Ind. Appl., 2012, 48, pp. 23822389.
    14. 14)
      • 11. Morimoto, S., Takeda, Y., Hirasa, T., et al: ‘Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity’, IEEE Trans. Ind. Appl., 1990, 26, pp. 866871.
    15. 15)
      • 16. Dakai, H., Lei, Z., Longya, X.: ‘Maximum torque per volt operation and stability improvement of PMSM in deep flux-weakening region’. Energy Conversion Congress and Exposition (ECCE), 2012, 2012, pp. 12331237.
    16. 16)
      • 22. Zhang, X.N., Foo, G., Douglas, L.M., et al: ‘An improved robust field-weakening control algorithm for direct torque controlled IPM synchronous motors’. 2014 Australasian Universities Power Engineering Conf. (AUPEC), 2014, pp. 16.
    17. 17)
      • 6. Lixin, T., Limin, Z., Rahman, M.F., et al: ‘A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency’, IEEE Trans. Power Electron., 2004, 19, pp. 346354.
    18. 18)
      • 9. Foo, G., Goon, C.S., Rahman, M.F.: ‘Analysis and design of the SVM direct torque and flux control scheme for IPM synchronous motors’. Int. Conf. Electrical Machines and Systems, 2009, ICEMS 2009, 2009, pp. 16.
    19. 19)
      • 31. Xiao, D., Rahman, M.F.: ‘Sensorless direct torque and flux control for matrix converter-fed interior permanent magnet synchronous motor using adaptive sliding mode observer’. IEEE PES General Meeting, 2010, pp. 15.
    20. 20)
      • 14. Bing, C., Tesch, T.R.: ‘Torque feedforward control technique for permanent-magnet synchronous motors’, IEEE Trans. Ind. Electron., 2010, 57, pp. 969974.
    21. 21)
      • 25. Quntao, A., Li, S.: ‘On-line parameter identification for vector controlled PMSM drives using adaptive algorithm’. 2008 IEEE Vehicle Power and Propulsion Conf., 2008, pp. 16.
    22. 22)
      • 30. Jun, H., Bin, W.: ‘New integration algorithms for estimating motor flux over a wide speed range’, IEEE Trans. Power Electron., 1998, 13, pp. 969977.
    23. 23)
      • 4. Depenbrock, M.: ‘Direct self-control (DSC) of inverter-fed induction machine’, IEEE Trans. Power Electron., 1988, 3, pp. 420429.
    24. 24)
      • 29. Ilioudis, V.C., Margaris, N.I.: ‘PMSM sensorless speed estimation based on sliding mode observers’. 2008 IEEE Power Electronics Specialists Conf., 2008, pp. 28382843.
    25. 25)
      • 12. Jahns, T.M., Kliman, G.B., Neumann, T.W.: ‘Interior permanent-magnet synchronous motors for adjustable-speed drives’, IEEE Trans. Ind. Appl., 1986, IA-22, pp. 738747.
    26. 26)
      • 28. Bolognani, S., Oboe, R., Zigliotto, M.: ‘Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position’, IEEE Trans. Ind. Electron., 1999, 46, pp. 184191.
    27. 27)
      • 3. Takahashi, I., Noguchi, T.: ‘A new quick-response and high-efficiency control strategy of an induction motor’, IEEE Trans. Ind. Appl., 1986, IA-22, pp. 820827.
    28. 28)
      • 27. Phowanna, P., Boonto, S., Konghirun, M.: ‘Online parameter identification method for IPMSM drive with MTPA’. 2015 18th Int. Conf. Electrical Machines and Systems (ICEMS), 2015, pp. 17751780.
    29. 29)
      • 24. Ekanayake, S., Dutta, R., Rahman, M.F., et al: ‘Operation along the maximum torque per voltage trajectory in a direct torque and flux controlled interior permanent magnet synchronous motor’. 8th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), 2016, pp. 16.
    30. 30)
      • 20. Faiz, J., Mohseni-Zonoozi, S.H.: ‘A novel technique for estimation and control of stator flux of a salient-pole PMSM in DTC method based on MTPF’, IEEE Trans. Ind. Electron., 2003, 50, pp. 262271.
    31. 31)
      • 15. Zhu, L., Xue, S., Wen, X., et al: ‘A new deep field-weakening strategy of IPM machines based on single current regulator and voltage angle control’. Energy Conversion Congress and Exposition (ECCE), 2010, 2010, pp. 11441149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0147
Loading

Related content

content/journals/10.1049/iet-epa.2017.0147
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address