access icon free Derivation and verification of a vector controller for induction machines with consideration of stator and rotor core losses

The equivalent circuit of an induction machine (IM) without regard to iron loss would lead not only significant mismatch between simulation and experimental results but also deteriorate the vector control performance. This study focuses on modifying the indirect rotor flux-oriented controller subject to the IM equivalent circuit with consideration of stator and rotor core losses. An analytical approach based on the core-loss model for estimating the rotor slip shows salient impact of the stator and rotor core loss on IM performance. A 10 HP IM is performed for laboratory test. The experimental and simulation results validate that the modified vector controller is superior to the conventional vector controller in both transient and steady-state responses.

Inspec keywords: stators; equivalent circuits; machine vector control; rotors; cores; asynchronous machines; machine testing; machine theory

Other keywords: equivalent circuit; indirect rotor flux-oriented controller; iron loss; vector control performance; power 10 hp; stator core loss model; rotor slip estimation; induction machine; IM; rotor core loss model

Subjects: Control of electric power systems; Asynchronous machines

References

    1. 1)
      • 13. Hashemnia, M.N., Tahami, F., Oyarbide, E.: ‘Investigation of core loss effect on steady-state characteristics of inverter fed brushless doubly fed machines’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 5764.
    2. 2)
      • 10. Chatterjee, D.: ‘Impact of core losses on parameter identification of three-phase induction machines’, IET Power Electron., 2014, 7, (12), pp. 31263136.
    3. 3)
      • 23. Jung, J., Nam, K.: ‘A vector control scheme for EV induction motors with a series iron loss model’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 617624.
    4. 4)
      • 8. Gmyrek, Z., Boglietti, A., Cavagnino, A.: ‘Estimation of iron losses in induction motors: calculation method, results, and analysis’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 161171.
    5. 5)
      • 6. Chen, W.-L., Cheng, K.-M.: ‘Parameter identification of induction machines with consideration of rotor core loss’, Int. J. Electr. Eng., 2014, 21, (1), pp. 1320.
    6. 6)
      • 9. Roy, K., Chatterjee, D., Ganguli, A.K.: ‘An online core loss estimation technique for self-excited induction generator’. Proc. PEDES, 2010, pp. 14.
    7. 7)
      • 1. IEEE Standard 112-2004, IEEE standard test procedure for polyphase induction motors and generators.
    8. 8)
      • 14. Levi, E., Sokola, M., Boglietti, A., et al: ‘Iron loss in rotor-flux-oriented induction machines: identification, assessment of detuning, and compensation’, IEEE Trans. Power Electron., 1996, 11, (5), pp. 698708.
    9. 9)
      • 21. Dominguez, J.R., Mora-Soto, C., Ortega-Cisneros, S., et al: ‘Copper and core loss minimization for induction motors using high-order sliding-mode control’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 28772889.
    10. 10)
      • 18. Noguchi, T., Omura, T., Hiraishi, D.: ‘Direct field-oriented control of induction motor with iron-core loss compensation and robust parameter identification’. Proc. IECON, 2010, vol. 2, pp. 12011206.
    11. 11)
      • 7. Boglietti, A., Bojoi, R., Cavagnino, A., et al: ‘Core loss estimation method for PWM inverter fed induction motors’. Proc. IECON, 2010, pp. 811816.
    12. 12)
      • 19. Matsuse, K., Yoshizumi, T., Katsuta, S., et al: ‘High-response flux control of direct-field-oriented induction motor with high efficiency taking core loss into account’, IEEE Trans. Ind. Appl., 1999, 35, (1), pp. 6269.
    13. 13)
      • 2. Attaianese, C., Damiano, A., Gatto, G., et al: ‘Induction motor drive parameters identification’, IEEE Trans. Power Electron., 1998, 13, (5), pp. 11121122.
    14. 14)
      • 22. Gennaro, S.D., Dominguez, J.R., Meza, M.A.: ‘Sensorless high order sliding mode control of induction motors with core loss’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 26782689.
    15. 15)
      • 11. Babau, R., Boldea, I., Miller, T.J.E., et al: ‘Complete parameter identification of large induction machines from no-load acceleration–deceleration tests’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 19621972.
    16. 16)
      • 20. Dominguez, J.R., Mora-Soto, C., Ortega-Cisneros, S., et al: ‘Super-twisting control of induction motors with core loss’. Proc. Variable Structure System, 2010, pp. 428433.
    17. 17)
      • 17. Noguchi, T., Hiraishi, D.: ‘Core loss compensation of direct field-oriented induction motor incorporating robust parameter identification’. Proc. IECON, 1999, vol. 3, pp. 14091414.
    18. 18)
      • 4. Lin, W.-M., Su, T.-J., Wu, R.-C.: ‘Parameter identification of induction machine with a starting no-load low-voltage test’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 352360.
    19. 19)
      • 12. Laldin, O., Dlala, E., Arkkio, A.: ‘Circuit models for predicting core losses in the stator and rotor of a caged induction machine with sinusoidal supplies’, IEEE Trans. Magn., 2011, 47, (5), pp. 10541057.
    20. 20)
      • 5. Boldea, I., Nasar, S.A.: ‘The induction machines design handbook’ (CRC Press, 2010, 2nd edn.).
    21. 21)
      • 3. Kwon, Y.-S., Lee, J.-H., Moon, S.-H., et al: ‘Standstill parameter identification of vector-controlled induction motors using the frequency characteristics of rotor bars’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 16101618.
    22. 22)
      • 15. Levi, E.: ‘Impact of iron loss on behavior of vector controlled induction machines’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12871296.
    23. 23)
      • 16. Mannan, M.A., Murata, T., Tamura, J., et al: ‘Indirect field oriented control for high performance induction motor drives using space vector modulation with consideration of core loss’. Proc. PESC, 2003, vol. 3, pp. 14491454.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2016.0654
Loading

Related content

content/journals/10.1049/iet-epa.2016.0654
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading