Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamics of the fractional-order chaotic PMSG, its stabilisation using predictive control and circuit validation

This work focuses on two prime objectives. The first is to detect chaos in the fractional-order model of a permanent magnet synchronous generator (PMSG) and the second is to suppress chaos using a novel predictive control scheme in the fractional order sense. The main contributions of the work, therefore, lie in discovering the minimum commensurate order for which chaos exists in the fractional-order PMSG (FOPMSG), studying its dynamical behaviour ranging from Hopf bifurcation to stability analysis and the proposal of a single-state predictive controller to stabilise the chaotic FOPMSG in both commensurate as well as incommensurate orders. The proposal of predictive controller for controlling chaos in a fractional-order variable-speed drive is a novel attempt. Lower control effort, effectiveness, simplicity in design and application, convenience in inclusion of non-linearity, etc. highlight the promising potential of the proposed predictive control scheme. Circuit implementation results which are in good qualitative agreement with that of simulated results, confirm that the work attains the objectives successfully.

References

    1. 1)
      • 37. Huang, G., Wu, X.: ‘Hopf bifurcation of permanent-magnet synchronous motor chaos system’. Int. Conf. on Computational and Information Sciences, IEEE, 2011, pp. 12051207.
    2. 2)
    3. 3)
      • 4. Bhalekar, S., Daftardar-Gejji, V.: ‘Chaos in fractional order financial delay system’, Comput. Math. Appl., 2016, in press.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 29. Borah, M., Roy, P., Roy, B.K.: ‘Synchronisation control of a novel fractional-order chaotic system with hidden attractor’. IEEE Students Technology Symp., IIT Kharagpur, 30th September 2016.
    15. 15)
      • 32. Petras, I.: ‘Fractional-order systems’, in Luo, A.C.J., Ibragimov, N.H. (Ed): ‘Fractional-order nonlinear systems: modeling, analysis and simulation’ (Beijing and Springer-Verlag Berlin Heidelberg, 2011), pp. 4779.
    16. 16)
    17. 17)
    18. 18)
      • 22. Chen, D., Shi, P., Ma, X.: ‘Control and synchronization of chaos in an induction motor system’, Int. J. Innov. Comput. Inf. Control, 2012, 8, pp. 72377248.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 6. Monje, C.A., Chen, Y., Vinagre, B.M., et al: ‘Fundamentals of fractional-order systems’, in Grimble, M.J., Johnson, M.A. (Eds.): ‘Fractional-order systems and controls—funadamentals and applicarions’ (Springer-Verlag London Limited, 2010, 1st edn.), pp. 1130.
    26. 26)
    27. 27)
      • 16. Mandelbort, B.: ‘The fractal geometry of nature’ (Freeman, New York, 1983).
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 38. Podlubny, I.: ‘Geometric and physical interpretation of fractional integration and fractional differentiation’, Fractional Calc. Appl. Anal., 2002, 5, pp. 367386.
    38. 38)
      • 30. Borah, M., Roy, B.K.: ‘Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronisation control’. IEEE Indian Control Conf., IIT Guwahati, 4–6 January 2017, (accepted).
    39. 39)
      • 31. Borah, M., Roy, B.K.: ‘Switching synchronisation control between integer-order and fractional-order dynamics of a chaotic system’. IEEE Indian Control Conf., IIT Guwahati, 4–6 January 2017, (accepted).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2016.0506
Loading

Related content

content/journals/10.1049/iet-epa.2016.0506
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address