access icon free Coupled thermal and hydraulic algebraic models for an open self-ventilated induction machine

The prediction of the thermal behaviour of electric motors in the early stages of their design is a critical factor for reducing time and cost in the design process. In complex machine topologies such as open self-ventilated machines, there are several phenomenas to take into account in order to predict the correct thermal behaviour of the machine. In this study, a thermal model coupled with a hydraulic model is presented. These models provide information of the thermal behaviour of the machine. First, the complete thermal circuit is described, with some emphasis in the specially modelled parts. Then, the heat transfer coefficients for each surface inside the machine are presented, by the use of dimensionless correlations that avoids the need of previous knowledge. Moreover, the hydraulic model of the machine is studied, and also the coupling methodology between the two models is described for both steady state and transient calculations. Finally, the results from the model are validated using the data from two experimental runs, the first one with constant torque and speed, and the other with variable power, in a standardised service cycle, with a difference in the rotor bars and the stator winding below ±10°C.

Inspec keywords: electric machines; ventilation; asynchronous machines; thermal analysis; heat transfer

Other keywords: hydraulic algebraic models; thermal circuit; thermal behaviour; self-ventilated induction machine; complex machine topologies; heat transfer coefficients; electric motors

Subjects: Asynchronous machines; Air conditioning

References

    1. 1)
      • 21. Favre-Marinet, M., Tardu, S.: ‘Convective heat transfer’ (John Wiley & Sons, 2010).
    2. 2)
      • 17. Kakaç, S., Shah, R., Aung, W.: ‘Handbook of single-phase convective heat transfer(ser. A Wiley Interscience publication) (Wiley, USA, 1987).
    3. 3)
    4. 4)
      • 30. Taylor, J.L.: ‘Calculating air flow through electrical machines’, Electr. Times, 1960, July, pp. 8284.
    5. 5)
      • 31. Standard IEC 60034-1:2010: ‘Rotating electrical machines – part 1: rating and performance’, 2010.
    6. 6)
      • 4. Connor, P., Pickering, S., Gerada, C., Eastwick, C., Micallef, C.: ‘CFD modelling of an entire synchronous generator for improved thermal management’.  Sixth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012), 2012, pp. 16.
    7. 7)
    8. 8)
      • 8. Micallef, C.: ‘End winding cooling in electric machines’. PhD dissertation, University of Nottingham, 2006.
    9. 9)
      • 27. Satrustegui, M., Martínez-Iturralde, M., Rivas, A., Ramos, J.C.: ‘Algebraic model for predicting the hydraulic behaviour of an open self-ventilated electrical machine’, Int. Rev. Model. Simul. (IREMOS), 2013, 6, (5), pp. 12.
    10. 10)
    11. 11)
      • 15. SKF online catalog: [Online]. Available at http://www.skf.com.
    12. 12)
    13. 13)
      • 20. Burmeister, L.C.: ‘Convective heat transfer(ser. A Wiley-Interscience publication) (Wiley, 1993).
    14. 14)
      • 19. Bejan, A.: ‘Convection heat transfer(ser. A Wiley-Interscience publication) (J. Wiley, 1995).
    15. 15)
      • 18. Kays, W., Crawford, M., Weigand, B.: ‘Convective heat and mass transfer(ser. McGraw-Hill series in mechanical engineering) (McGraw-Hill Higher Education, 2005).
    16. 16)
      • 29. Daly, B.: ‘Woods practical guide to fan engineering‘ (Woods of Colchester Limited, UK, 1978).
    17. 17)
      • 26. Schubert, E.: ‘Heat transfer coefficients at end winding and bearing covers of enclosed asynchronous machines’, Elektrie, 1968, 22, pp. 158164.
    18. 18)
    19. 19)
      • 6. Streibl, B., Neudorfer, H.: ‘Investigating the air flow rate of self-ventilated traction motors by means of computational fluid dynamics’. 2010 Int. Symp. on Power Electronics Electrical Drives Automation and Motion (SPEEDAM 2010), 2010, pp. 736739.
    20. 20)
      • 16. Incropera, F., Bergman, T., Lavine, A., DeWitt, D.: ‘Fundamentals of heat and mass transfer’ (John Wiley & Sons, USA, 2011).
    21. 21)
      • 28. Idelchik, I.E., Fried, E.: ‘Handbook of hydraulic resistance’ (Hemisphere Publishing, New York, NY, 1986).
    22. 22)
      • 14. Min, X., Jiang, S.: ‘A thermal model of a ball screw feed drive system for a machine tool’, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2011, 225, (1), pp. 186193.
    23. 23)
      • 7. Pickering, S., Lampard, D., Mugglestone, J.: ‘The use of computational fluid dynamics in the thermal design of rotating electrical machines’, Acta Polytech., 2000, 40, (4), pp. 4449.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 2. Motor-CAD: [Online]. Available at http://www.motor-design.com.
    28. 28)
    29. 29)
    30. 30)
      • 22. und Chemieingenieurwesen, V.-G.V.(Ed.): ‘VDI Heat Atlas’ (Springer, 2010).
    31. 31)
      • 24. Cheng, W.-T., Lin, H.-T.: ‘Unsteady and steady mass transfer by laminar forced flow against a rotating disk’, Heat Mass Transf., 1994, 30, (2), pp. 101108.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2014.0396
Loading

Related content

content/journals/10.1049/iet-epa.2014.0396
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading