access icon free Direct liquid cooling for an outer-rotor direct-drive permanent-magnet synchronous generator for wind farm applications

Offshore applications, which call for the largest and most powerful wind turbines, demand a higher standard of reliability and maintainability. Direct-drive permanent-magnet synchronous generators (DD-PMSGs) are increasingly being specified for these applications. The major shortcoming to traditional high-powered direct-drive generators is extraordinary size and mass leading to extraordinary cost. To generate higher powers at low rotational speeds, direct-drive generators must either develop greater tangential stresses or be larger in diameter. For traditional air-cooled generators, higher power generally means a much larger diameter. Dramatic cost savings can be realised with the development of a more effective stator windings cooling system that puts further the limit on current density enabling the development of high-power direct-drive generators of substantially smaller diameters. This study presents a direct liquid cooling system design for an 8 MW outer-rotor DD-PMSG. The approach is new for wind turbine generators, so its impact on the thermal behaviour and reliability for the total electrical machine has been evaluated and reported here. Testing of a stator coil prototype (1/72nd of the complete stator) with internal cooling liquid flow is also reported to demonstrate the workability of the designed cooling solution.

Inspec keywords: wind turbines; synchronous generators; stators; magnetic flux; permanent magnet generators; reliability; cooling; wind power plants

Other keywords: air-cooling system; magnetic flux density; high-power direct-drive generators; direct liquid cooling system design; wind turbine; wind power; stator windings current; DD-PMSG; wind farm; tangential stress; outer-rotor direct-drive permanent-magnet synchronous generator; stator windings cooling system; power 8 MW

Subjects: Reliability; Synchronous machines; Wind power plants

References

    1. 1)
      • 13. Pyrhonen, J.J., Alexandrova, Y., Semken, R.S., Hamalainen, H.: ‘Wind power electrical drives for permanent magnet generators – development in Finland’. ELEKTRO, 2012.
    2. 2)
    3. 3)
      • 8. Tomas, T.: ‘Ice-cold physics’, Sun Wind Energy, 2010, 1, pp. 120122.
    4. 4)
      • 50. Irwanto, B., Steigleder, K., Perros, O., Verrier, M.: ‘Large 60 Hz turbogenerators: mechanical design and improvements’. Electric Machines and Drives Conf. (IEMDC), Miami, USA, 2009.
    5. 5)
      • 24. Product Information of ECOCUT HS. Available at http://www.fuchs-oil.fi.
    6. 6)
    7. 7)
      • 38. Technical Report: ‘Failure rate and event data for use within land use planning risk assessments’. HSE, UK, 2010.
    8. 8)
      • 41. Service Catalog of Manifolds, Lebentech. Available at http://www.lebentech.com.
    9. 9)
    10. 10)
      • 15. Alexandrova, Y.Wind turbine direct-drive permanent-magnet generator with direct liquid cooling for mass reduction’. LUT dissertation, Lappeenranta, Finland, 2014.
    11. 11)
    12. 12)
    13. 13)
      • 23. Product Technical Data: ‘Thermophysical properties of brines’ (m. Code Engineering, Zurich, Switzerland).
    14. 14)
      • 49. ENEA Technical Report. Available at http://www.frascati.enea.it.
    15. 15)
      • 18. Connor, P.H., Pickering, S.J., Gerada, C., Eastwick, C.N., Micallef, C.: ‘CFD modelling of an entire synchronous generator for improved thermal management’. PEMD, 2012, p. 114.
    16. 16)
      • 53. Villemeur, A.: ‘Reliability, availability, maintainability and safety assessment’ (John Wiley & Sons, England, 1992).
    17. 17)
      • 26. Ibtiouen, R., Nouali, N., Benhaddadi, M.: ‘Application of lumped parameters and finite element methods to the thermal modeling of a induction motor’. Proc. IEEE Int. Electronic Machines and Drives Conf., 2001, pp. 505507.
    18. 18)
    19. 19)
      • 52. Etemad, G.A.: ‘Free-convection heat transfer from a rotating horizontal cylinder to ambient air with interferometric study of flow’, Trans. ASME, 1955, 77, pp. 12831289.
    20. 20)
      • 48. Cadwallader, L.C.: ‘Selected component failure rate values from fusion safety assessment tasks’. Report, Idaho, USA, 1989. Available at http://www.inl.gov/technicalpublications/Documents/3318080.pdf.
    21. 21)
    22. 22)
    23. 23)
      • 14. Alexandrova, Y., Semken, R.S., Pyrhonen, J.: ‘Permanent magnet synchronous generator design solution for large direct-drive wind turbines’, Int. Rev. Electr. Eng., IREE, 2014, 8, (6), pp. 17281737.
    24. 24)
      • 51. Product Technical Data: ‘ECOCUT HS’, FUCHS, Germany. Available at http://www.fuchs-oil.fi.
    25. 25)
      • 7. Snieckus, D.: ‘Supersizing the turbine test bench’, Recharge, 2013, 8, pp. 4345.
    26. 26)
      • 40. Technical Letter, EATON. Available at http://www.lusanga.com.
    27. 27)
      • 39. Lees, F.P.: ‘Loss prevention in the process industries’ (Elsevier, UK, 1996). Available at http://www.hse.gov.uk/landuseplanning/failure-rates.pdf.
    28. 28)
      • 12. Fodorean, D., Miraoui, A.: ‘Permanent magnets thermal operation limits in a hybrid excited synchronous machine used on wide speed applications’. Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM), 2008.
    29. 29)
    30. 30)
      • 10. Bang, B., Under, H.P., Shrestha, G., Ferreira, J.: ‘Promising direct-drive generator system for large wind turbine’. Wind Power to the Grid Seminar (EPE-WECS), 2008.
    31. 31)
      • 44. Worden, J.A., Mundulas, J.M.: ‘Understanding, diagnosing and repairing leaks in water-cooled generator stator winding’ (GE Power Systems, Schenectady, NY, 2001).
    32. 32)
      • 27. Maxwell, J.: ‘A treatise on electrical and magnetism’ (Dover, New York, 1954, 3rd edn.), vol. 1.
    33. 33)
      • 45. Hahn, B., Durstewitz, M., Rohling, K.: ‘Reliability of wind turbine. Experiences of 15 years with 1500 WTs’ (ISET, 2006).
    34. 34)
    35. 35)
      • 30. Elkins, C.G.: ‘Heat transfer in the rotating disk boundary layer’. Dissertation, Stanford University, 1997. Available at http://www.navier.stanford.edu/thermosciences/TSD-103.pdf.
    36. 36)
      • 22. Catalog of EVANS Liquids. Available at http://www.EVANScooling.com.
    37. 37)
    38. 38)
      • 20. Labai, V.I.: ‘Heat transfer’ (Triada Plus, Lvov, 1998), pp. 7576.
    39. 39)
      • 47. Wolpert, T.: ‘The reliability of power and cooling systems’. Int. Telecommunication Energy Conf., Washington, USA, 1982.
    40. 40)
      • 34. Dajaku, G., Gerling, D.: ‘An improved lumped parameter thermal model for electrical machines’. XIX Int. Conf. Electrical Machines – ICEM, 2010.
    41. 41)
      • 29. Bearg, D.W.: ‘Indoor air quality and HVAC systems’ (CRC Press, Florida, USA, 1993).
    42. 42)
      • 9. Lewis, C., Muller, J.: ‘A direct drive wind turbine HTS generator’. IEEE Power Engineering Society General Meeting, Tampa, FL, 2007.
    43. 43)
      • 28. Hong, C.: ‘Thermal modelling of the ventilation and cooling inside axial flux permanent magnet generator’. PhD dissertation, School of Engineering and Computer Science Durham University, UK, 2011.
    44. 44)
      • 21. 90/10 copper-nickel vs. Type 316 stainless steel a functional comparison of two condenser tube alloys’, Technical Letter, Fineweld Tube, USA. Available at http://www.olinbrass.com.
    45. 45)
      • 43. Hurst, N.W.: ‘Failure rate for pipeworks’, 1994.
    46. 46)
      • 16. Alexandrova, Y., Semken, R.S., Polikarpova, M., Pyrhonen, J.: ‘Defining proper initial geometry of an 8 MW liquid-cooled direct drive permanent magnet synchronous generator for wind turbine application based on minimizing mass’. XXth Int. Conf. on Electrical Machines, France, 2012, pp. 12501255.
    47. 47)
    48. 48)
      • 2. Keysan, O.: ‘Future electrical generator technologies for offshore wind turbines’, IET Eng. Technol. Ref., 2012, p. 11.
    49. 49)
      • 19. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S.: ‘Fundamentals of heat and mass transfer’ (John Wiley & Sons Publications, USA, 2007, 6th edn.), pp. 320440.
    50. 50)
      • 17. La Rocca, A., Pickering, S.J., Eastwick, C., Gerada, C.: ‘Enchancing cooling for an electric starter-generator for aerospace application’. PEMD, 2014, p. 267.
    51. 51)
      • 46. Fraas, A.P.: ‘Heat exchanger design’ (John Wiley & Sons, England, 1989).
    52. 52)
      • 6. De Vries, E.: Enercon E-126 7.5 MW still world's biggest. [Retrieved 2012]. Available at url: www.windpowermonthly.com, pp. 120122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2014.0342
Loading

Related content

content/journals/10.1049/iet-epa.2014.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading