access icon free Analytic modelling of a line-start permanent-magnet motor with slotted solid rotor

This study deals with an analytic model for slotted solid-rotor line-start permanent-magnet motors. The impact of non-linearity of solid-rotor impedance is taken into account in the proposed dynamic model by applying a numerical method. The rotor parameters are calculated as functions of rotor slip in the starting stage. Compared to the time-step finite element method, the proposed method is faster because, the rotor parameters can directly be utilised in the circuit model to simulate the transient start-up process of the line-start solid-rotor synchronous motors. Eventually, a four-pole, 250 V, 1500 rpm, 1050 W, three-phase synchronous motor with a slotted solid rotor is designed and prototyped to experimentally validate the capabilities of the proposed analytic model.

Inspec keywords: numerical analysis; synchronous motors; rotors; permanent magnet motors; machine theory

Other keywords: time-step finite element method; voltage 250 V; rotor slip functions; line-start solid-rotor synchronous motors; analytic modelling; line-start permanent-magnet motor; solid-rotor impedance nonlinearity; transient start-up process; slotted solid rotor; three-phase synchronous motor; power 1050 W; numerical method; circuit model

Subjects: Other numerical methods; Synchronous machines

References

    1. 1)
    2. 2)
      • 27. Dan, S., Cernat, M., Hay, H., Drago, B.: ‘Line-start permanent magnet synchronous motors. analysis and design’. EDPE 2009 Proc./Zvonko Benčić (Ur.), Zagreb, Korema Zagreb, 2009, pp. 112.
    3. 3)
    4. 4)
      • 2. Isfahani, A.H., Vaez Zadeh, S.: ‘Line start permanent magnet synchronous motors: challenges and opportunities’, Elsevier J. Energy, 2009, 34, (11), pp. 17551763.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 17. NiazAzari, M., Mirsalim, M., Mohammadi, S.: ‘Effect of rotor slots parameters on synchronization capability of slotted solid rotor line start permanent magnet motor’. Fourth Power Electronics, Drive Systems & Technologies Conf. (PEDSTC2013), Tehran, Iran, 13–14 February 2013.
    12. 12)
    13. 13)
    14. 14)
      • 20. Siavash, S., Mojtaba, M.: ‘Dynamic modeling and simulation of a switched reluctance motor in a series hybrid electric vehicle’, Acta Polytech. Hung., J. Appl. Sci. Hungary, 2010, 7, (1), pp. 5171.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 23. Paul, C.K., Oleg, W., Scott, D.S.: ‘Analysis of electric Machinery’, IEEE Power Eng. Soc., 1995.
    19. 19)
    20. 20)
    21. 21)
      • 18. Aho, T.: ‘Electromagnetic design of a solid steel rotor motor for demanding operation environment’. PhD thesis, Lappeenranta University of Technology, Helsinki, Finland, 2007.
    22. 22)
      • 7. Kim, B.-T., Kwon, B.-I.: ‘Influence of space harmonics on starting performance of 1-phase line start permanent magnet motor’. Twelveth Biennial IEEE Conf. Electromagnetic Field Computation 2006, 2006, p. 387.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 22. Liang, C., Shanming, W.: ‘Analysis of rotor equivalent parameters of solid-rotor synchronous motors’. Int. Conf. Electrical Machines and Systems, ICEMS, 17–20 October 2008.
    27. 27)
    28. 28)
      • 31. Huppunen, J.: ‘High-speed solid-rotor induction machine: electromagnetic calculation and design’. PhD thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2004.
    29. 29)
      • 8. Rodger, D., Lai, H.C., Hill-Cottingham, R.J., Coles, P.C., Robinson, F.: ‘A new high efficiency line start motor with high starting torque’. The Third IET Int. Conf. Power Electronics, Machines and Drives 2006, PEMD 2006, 2006, pp. 551555.
    30. 30)
    31. 31)
      • 24. Sen, P.C.: ‘Principles of electric machines and power electronic’ (2013, 3rd edn.), www.amazon.com.
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2014.0018
Loading

Related content

content/journals/10.1049/iet-epa.2014.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading