Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Load angle estimation for two-phase hybrid stepping motors

Stepping motors are often used for low-power open-loop positioning. In conventional stepping motor drives, a step rate or speed is imposed. To avoid step loss in open-loop, most stepping motors are driven at maximum current resulting in a poor energy efficiency. However, when position feedback is available, the drive current can be optimised. A position sensor adds costs and complexity to the system. Therefore, rotor position estimators are developed, often referred to as sensorless controllers. A drawback in some of these methods is the requirement of information on the mechanical load which is usually not available or varies over time. In this study, an alternative estimator is proposed, based on the load angle between the current excitation vector and the instantaneous rotor flux position. This load angle reflects the capability of the system to follow the speed setpoint and gives an indication of the robustness to torque disturbances. Therefore the load angle estimation is interesting to provide feedback to a controller which adapts the drive current. Here, an estimator is proposed solely based on electrical motor parameters and electrical measurements. The algorithm, based on a sliding discrete Fourier transformation, is applicable with the typical full-, half- and micro-stepping drive algorithms. Finally, measurement results validate the estimation algorithm.

References

    1. 1)
    2. 2)
    3. 3)
      • 1. Kuert, C., Jufer, M., Perriard, Y.: ‘New method for dynamic modeling of hybrid stepping motors’. Conf. Record of the Industry Applications Conf., 37th IAS Annual Meeting, 2002, vol. 1, pp. 612.
    4. 4)
      • 21. Derammelaere, S., Carlier, L., Vervisch, B., et al: ‘The opportunities of two-phase hybrid stepping motor back EMF sampling’. IEEE ECCE Energy Conversion Congress and Exposition, 2011, pp. 8387.
    5. 5)
    6. 6)
      • 2. Derammelaere, S., Vervisch, B., De Belie, F., et al: ‘A linear time-invariant model for a vector-controlled two-phase stepping motor’. IET Int. Conf. on Power Electronics, Machines and Drives (PEMD), 2010.
    7. 7)
    8. 8)
      • 24. Vas, P.: ‘Sensorless vector and direct torque control’ (Oxford University Press, New York, 1998).
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 27. Derammelaere, S., Vervisch, B., De Belie, F., et al: ‘A nonlinear and linear model of a hybrid stepping motor’. ELECTRIMACS, 2011.
    17. 17)
      • 23. Duda, K.: ‘Accurate, guaranteed stable, sliding discrete Fourier transform [DSP tips & tricks]’, IEEE Signal Process. Mag., 2010, 27, (6), pp. 124127.
    18. 18)
    19. 19)
      • 9. Gao, H., Cheng, S., Sun, L., Kang, E.: ‘Maximum torque/current control of 2-phase hybrid stepping motor’. IEEE Int. Electric Machines & Drives Conf. (IEMDC), 2003, vol. 3, pp. 17811786.
    20. 20)
    21. 21)
      • 30. Debruyne, C., Desmet, J., Vervish, B., Derammelaere, S., Vandevelde, L.: ‘Influence of harmonic voltage distortion on asynchronous generators’. IEEE Int. Symp. on Diagnostics for Electric Machines, Power Electronics & Drives (SDEMPED), 2011, pp. 159164.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 26. PsiControl Mechatronics: ‘Datasheet: Oxi functional description’ (Ieper, Belgium, 2008), pp. 163.
    29. 29)
      • 34. DSPACE: ‘DS1104 R&D controller board’. Paderborn, 2009, pp. 332337.
    30. 30)
      • 3. Derammelaere, S., Vervisch, B., Cottyn, J., et al: ‘ISO efficiency curves of a -two-phase hybrid stepping motor’. IEEE Industry Applications Society Annual Meeting, Houston, Texas, October 2010, pp. 15.
    31. 31)
      • 28. ON Semiconductor: ‘Micro-stepping stepper motor bridge controller’. 2011, p. 41.
    32. 32)
    33. 33)
      • 20. Cox, P., Decock, B.: ‘Patent EP 1 968 183 A1: Output contact for feedback in integrated circuit motor driver’. 2008.
    34. 34)
    35. 35)
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2013.0333
Loading

Related content

content/journals/10.1049/iet-epa.2013.0333
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address