Print ISSN 1751-8660"/>
http://iet.metastore.ingenta.com
1887

Improved predictive current control for unbalanced stand-alone doubly-fed induction generator-based wind power systems

Buy article PDF
$19.95
Buy Knowledge Pack
10 articles for $120.00

Abstract

This study proposes an improved predictive current control (PCC) strategy for unbalanced stand-alone doubly-fed induction generator (DFIG)-based wind power systems. The proposed control scheme predicts an appropriate average rotor voltage vector in next switching period to eliminate the rotor current errors in the following control period. The identified voltage vector sequence is then applied to the rotor-side converter (RSC) by using space-vector modulation with constant switching frequency. To increase the control accuracy, a proposed compensation method for the control time delay inherent in the digital implementation, mainly due to the sampling and calculation processes, is adopted. The whole control algorithm is performed in the RSC to achieve the desired control output, that is, compensation for the stator voltage imbalance. In addition, the effect of parameter variation on the performance of the control scheme is also considered. The proposed PCC method was tested by both simulations and experiments with 2.2 kW DFIG feeding an unbalanced load to demonstrate the excellent steady-state performance as well as the extremely fast dynamic response of the proposed current controller.

References

    1. 1)
      • 1 onward link is available for this reference.
      • CrossRef
    2. 2)
      • 1 onward link is available for this reference.
      • CrossRef
    3. 3)
      • 1 onward link is available for this reference.
      • CrossRef
    4. 4)
      • 1 onward link is available for this reference.
      • CrossRef
    5. 5)
      • 1 onward link is available for this reference.
      • CrossRef
    6. 6)
      • 1 onward link is available for this reference.
      • CrossRef
    7. 7)
      • 1 onward link is available for this reference.
      • CrossRef
    8. 8)
      • 1 onward link is available for this reference.
      • CrossRef
    9. 9)
      • 1 onward link is available for this reference.
      • CrossRef
    10. 10)
      • 1 onward link is available for this reference.
      • CrossRef
    11. 11)
      • V.T. Phan , H.H. Lee , T.W. Chun . An improved control strategy using PI-resonant controller for unbalanced stand-alone doubly-fed induction generator. J. Power Electron. , 2 , 194 - 202
    12. 12)
      • 1 onward link is available for this reference.
      • CrossRef
    13. 13)
      • 1 onward link is available for this reference.
      • CrossRef
    14. 14)
      • 1 onward link is available for this reference.
      • CrossRef
    15. 15)
      • 1 onward link is available for this reference.
      • CrossRef
    16. 16)
      • H.-T. Moon , H.-S. Kim , M.-J. Youn . A discrete-time predictive current control for PMSM. IEEE Trans. Ind. Electron. , 2 , 747 - 759
    17. 17)
      • 1 onward link is available for this reference.
      • CrossRef
    18. 18)
      • 1 onward link is available for this reference.
      • CrossRef
    19. 19)
      • 1 onward link is available for this reference.
      • CrossRef
    20. 20)
      • 1 onward link is available for this reference.
      • CrossRef
    21. 21)
      • 1 onward link is available for this reference.
      • CrossRef
    22. 22)
      • 1 onward link is available for this reference.
      • CrossRef
    23. 23)
      • Retif, J.-M., Xuefang, L.-S., Morel, F.: `Predictive current control for an induction motor', IEEE Power Electronics Specialists Conf., June 2008, p. 3463–3468.
    24. 24)
      • 1 onward link is available for this reference.
      • CrossRef
    25. 25)
      • 1 onward link is available for this reference.
      • CrossRef
    26. 26)
      • 1 onward link is available for this reference.
      • CrossRef
    27. 27)
      • 1 onward link is available for this reference.
      • CrossRef
    28. 28)
      • 1 onward link is available for this reference.
      • CrossRef

Related content

content/journals/10.1049/iet-epa.2010.0107
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address