Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

How to make local image features more efficient and distinctive

How to make local image features more efficient and distinctive

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A technique to construct efficient and distinctive descriptors for local image features is presented. The authors start with the scale invariant features detected and the gradient data of their neighbourhood patches in suitable size normalised and then apply independent component analysis (ICA) to obtain the independent components of the feature patches. The authors show how the ICA technique could be used to encode the salient aspects of the feature vectors because of the high-order statistical characteristics of both natural images and ICA. Comparisons are made between our descriptors and some state-of-the-art methods (e.g. scale invariant feature transform). Experimental results demonstrate that the proposed local feature descriptor is distinctive and with high matching speed.

References

    1. 1)
      • A. Baumberg . (2000) Reliable feature matching across widely separated views.
    2. 2)
      • Fergus, R., Perona, P., Zisserman, A.: `Object class recognition by unsupervised scale-invariant learning', Proc. Computer Vision and Pattern Recognition, June 2003.
    3. 3)
      • W.T. Freeman , E.H. Adelson . The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. , 891 - 906
    4. 4)
      • Matas, J., Chum, O., Urban, M., Pajdla, T.: `Robust wide baseline stereo from maximally stable external regions', Proc. 13th Conf. British Machine Vision, 2002, Cardiff, England, p. 384–393.
    5. 5)
      • D.D. Lee , H.S. Seung . Learning the parts of objects by non-negative matrix factorization. Nature , 788 - 791
    6. 6)
      • T. Tuytelaars , L. Van Gool . Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. , 59 , 61 - 85
    7. 7)
      • Karhunen, J.: `Neural approaches to independent component analysis and source separation', Proc. 4th European Symp. Artificial Neural Networks (ESANN'96), April 1996, Bruges, Belgium, p. 249–266.
    8. 8)
      • H.B. Barlow , C. Koch , J.L. Davis . (1994) What is the computational goal of the neocortex?, Large-scale neuronal theories of the brain.
    9. 9)
      • J. Wang , G. Wiederhold . SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1 - 17
    10. 10)
      • J. Yao , W.K. Cham . 3D modeling and rendering from multiple wide-baseline images by match propagation. Signal Process. Image Commun. , 506 - 518
    11. 11)
      • F. Jurie , C. Schmid . (2004) Scale-invariant shape features for recognition of object categories.
    12. 12)
      • G. Carneiro , A. Jepson . (2003) Multi-scale phase-based local features.
    13. 13)
      • W.E. Vinje , J.L. Gallant . Sparse coding and decorrelation in primary visual cortex during natural vision. Science , 1273 - 1276
    14. 14)
      • A. Hyvarinen , E. Oja . Independent component analysis: algorithms and applications. Neural Netw. , 411 - 430
    15. 15)
      • Lazebnik, S., Schmid, C., Ponce, J.: `Sparse texture representation using affine-invariant neighborhoods', Proc. Int. Conf. Computer Vision and Pattern Recognition, 2003, Madison, Wisconsin, USA.
    16. 16)
      • Ke, Y., Sukthankar, R.: `PCA-SIFT: a more distinctive representation for local image descriptors', Proc. Conf. Computer Vision and Pattern Recognition, 2004, Washington, USA, p. 511–517.
    17. 17)
      • B. Olshausen , D. Field . Emergence of simple-cell receptive field properties by learning a sparsecode fornatural images. Nature , 607 - 609
    18. 18)
      • J. Karhunen , J. Joutsensalo . Generalization of principal component analysis, optimization problems and neural networks. Neural Netw. , 4 , 549 - 562
    19. 19)
      • http://www.robots.ox.ac.uk/~vgg/research/affine, accessed February 2007.
    20. 20)
      • K. Mikolajczyk , J. Matas . (2007) Improving descriptors for fast tree matching by optimal liner projection.
    21. 21)
      • Mikolajczyk, K., Schmid, C.: `A performance evaluation of local descriptors', Proc. Computer Vision and Pattern Recognition, June 2003.
    22. 22)
      • J.F. Cardoso , A. Souloumiac . Blind beamforming for non-Gaussian signals. IEE Proc. F , 6 , 771 - 774
    23. 23)
      • L.M.J. Florack , B.M.T. Haar Romeny , J.J. Koenderink , M.A. Viergever . General intensity transformations and differential invariants. J. Math. Imaging Vis. , 171 - 187
    24. 24)
      • MPEG-7 Visual Experimentation Model (XM), Version 12.0, ISO/IEC/JTC1/SC29/WG11, Doc. N4548, December 2001.
    25. 25)
      • F. Mindru , T. Tuytelaars , L. Van Gool , T. Moons . Moment invariants for recognition under changing viewpoint and illumination. Comput. Vis. Image Underst. , 3 - 27
    26. 26)
      • Mikolajczyk, K., Schmid, C.: `Indexing based on scale invariant interest points', Proc. Int. Conf. Computer Vision, July 2001, p. 525–531.
    27. 27)
      • J. Cardoso . High-order contrasts for independent component analysis. Neural Comput. , 1 , 157 - 192
    28. 28)
      • F. Rothganger , S. Lazebnik , C. Schmid , J. Ponce . 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int. J. Comp. Vis. , 3 , 231 - 259
    29. 29)
      • G. Hua , M. Brown , S. Winder . (2007) Discriminant embedding for local image descriptors.
    30. 30)
      • Chen, H.T., Chang, H.W., Liu, T.L.: `Local discriminant embedding and its variants', Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2005, San Diego, CA, 2, p. 846–853.
    31. 31)
      • E. Oja , J. Karhunen , M. Palaniswami . (1995) Signal separation by nonlinear Hebbian learning, Computational intelligence – a dynamic system perspective.
    32. 32)
      • D. Lowe . Distinctive image features from scale-invariant keypoints, cascade filtering approach. Int. J. Comput. Vis. , 91 - 110
    33. 33)
      • P. Comon . Independent component analysis – a new concept?. Signal Process. , 287 - 314
    34. 34)
      • Schaffalitzky, F., Zisserman, A.: `Multi-view matching for unordered image sets', Proc. 7th European Conf. Computer Vision, 2002, Copenhagen, Denmark, p. 414–431.
    35. 35)
      • K. Mikolajczyk , C. Schmid . Scale and affine invariant interest point detectors. Int. J. Comput. Vis. , 63 - 86
    36. 36)
      • K. Mikolajczyk , T. Tuytelaars , C. Schmid . A comparison of affine region detectors. Int. J. Comput. Vis. , 43 - 72
    37. 37)
      • Lowe, D.G.: `Object recognition from local scale-invariant features', Proc. Int. Conf. Computer Vision, 1999, p. 1150–1157.
    38. 38)
      • A. Bell , T. Sejnowski . An information-maximization approach to blind separation and blind deconvolution. Neural Comput. , 1129 - 1159
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi_20070049
Loading

Related content

content/journals/10.1049/iet-cvi_20070049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address