http://iet.metastore.ingenta.com
1887

Robust tracking of multiple objects in video by adaptive fusion of subband particle filters

Robust tracking of multiple objects in video by adaptive fusion of subband particle filters

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Tracking of moving objects in video sequences is an important research problem because of its many industrial, biomedical, and security applications. Significant progress has been made on this topic in the last few decades. However, the ability to track objects accurately in video sequences that have challenging conditions and unexpected events, e.g. background motion and shadows; objects with different sizes and contrasts; a sudden change in illumination; partial object camouflage; and low signal-to-noise ratio, remains an important research problem. To address such difficulties, the authors developed a robust multiscale visual tracker that represents a captured video frame as different subbands in the wavelet domain. It then applies N independent particle filters to a small subset of these subbands, where the choice of this subset of wavelet subbands changes with each captured frame. Finally, it fuses the outputs of these N independent particle filters to obtain final position tracks of multiple moving objects in the video sequence. To demonstrate the robustness of their multiscale visual tracker, they applied it to four example videos that exhibit different challenges. Compared to a standard full-resolution particle filter-based tracker and a single wavelet subband (LL)2-based tracker, their multiscale tracker demonstrates significantly better tracking performance.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5376
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address