http://iet.metastore.ingenta.com
1887

Support vector machine approach to fall recognition based on simplified expression of human skeleton action and fast detection of start key frame using torso angle

Support vector machine approach to fall recognition based on simplified expression of human skeleton action and fast detection of start key frame using torso angle

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Falls sustained by subjects can have severe consequences, especially for elderly persons living alone. A fall detection method for indoor environments based on the Kinect sensor and analysis of three-dimensional skeleton joints information is proposed. Compared with state-of-the-art methods, the authors’ method provides two major improvements. First, possible fall activity is quantified and represented by a one-dimensional float array with only 32 items, followed by fall recognition using a support vector machine (SVM). Unlike typical deep learning methods, the input parameters of their method are dramatically reduced. Hence, videos are trained and recognised by an SVM with a low time cost. Second, the torso angle is imported to detect the start key frame of a possible fall, which is much more efficient than using a sliding window. Their approach is evaluated on the telecommunication systems team (TST) fall detection dataset v2. The results show that their approach achieves an accuracy of 92.05%, better than other typical methods. According to the characters of machine learning, when more samples are imported, their method is expected to achieve a higher accuracy and stronger capability of fall-like discrimination. It can be used in real-time video surveillance because of its time efficiency and robustness.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5324
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5324
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address