http://iet.metastore.ingenta.com
1887

Multi-layer fusion techniques using a CNN for multispectral pedestrian detection

Multi-layer fusion techniques using a CNN for multispectral pedestrian detection

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel multi-layer fused convolution neural network (MLF-CNN) is proposed for detecting pedestrians under adverse illumination conditions. Currently, most existing pedestrian detectors are very likely to be stuck under adverse illumination circumstances such as shadows, overexposure, or nighttime. To detect pedestrians under such conditions, the authors apply deep learning for effective fusion of the visible and thermal information in multispectral images. The MLF-CNN consists of a proposal generation stage and a detection stage. In the first stage, they design an MLF region proposal network and propose to use summation fusion method for integration of the two convolutional layers. This combination can detect pedestrians in different scales, even in adverse illumination. Furthermore, instead of extracting features from a single layer, they extract features from three feature maps and match the scale using the fused ROI pooling layers. This new multiple-layer fusion technique can significantly reduce the detection miss rate. Extensive evaluations of several challenging datasets well demonstrate that their approach achieves state-of-the-art performance. For example, their method performs 28.62% better than the baseline method and 11.35% better than the well-known faster R-CNN halfway fusion method in detection accuracy on KAIST multispectral pedestrian dataset.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5315
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address