access icon free Visual glare limits of HDR displays in medical imaging

Emerging display technologies are proposing monitors for medical imaging with an extended dynamic range of luminance. Those devices offer the opportunity to extend the range of visual information displayed, but the limits of the human visual system (HVS) in perceiving such information can cancel the advantages. To investigate this problem, we present a set of experiments, to assess the visual response of the HVS to controlled high dynamic range (HDR) content. They analyse the effects of glare. Using a typical HDR display, tailored for medical imaging applications, they first study the dependence of the visible dynamic range from the inter-ocular glare, induced by different backgrounds, then the effect of glare on the detection of test elements on medical radiographic images. Finally, they assess the influence of luminance-equivalent backgrounds with different structure in the detection of test patches. The results of the experiments confirm the glare as a major player in influencing visual information detection. Glare has a significant impact in limiting the amount of visual information actually perceived, consequently limiting analysis capabilities of such images. This confirms the importance of investigating and considering the characteristics of human vision in the design and test of HDR imaging systems.

Inspec keywords: computer displays; eye; brightness; medical image processing

Other keywords: inter-ocular glare; human capabilities; HDR displays; medical imaging applications; HDR content; high dynamic range monitors; visual information; glare mechanism; HVS; human vision; visual response; visible dynamic range; visual information perception; HDR imaging systems; visual glare limits; luminance-equivalent backgrounds; HDR medical radiographic images; typical HDR display; medical images; human visual system

Subjects: Computer vision and image processing techniques; Optical, image and video signal processing; Medical and biomedical uses of fields, radiations, and radioactivity; health physics; Biomedical measurement and imaging; Computer displays; Biology and medical computing; Patient diagnostic methods and instrumentation

References

    1. 1)
      • 6. Robinson, H.P.: Fading Away. 1858.
    2. 2)
      • 23. https://www.frontiersin.org/research-topics/5182/optical-veiling-glare-and-neural-processing-spatial-partners-in-vision (2018), accessed January 2018.
    3. 3)
      • 10. Ward, G.: ‘Defining dynamic range’. Proc. ACM SIGGRAPH 2008, Los Angeles, CA, USA, 2008, p. 30:130:3.
    4. 4)
      • 17. Badano, A., Guarnieri, G., Ramponi, G., et al: ‘Quantization in medical imaging displays: initial observer results for a high-luminance-range, dual-layer LCD’, SID Symp. Dig. Tech. Pap., 2009, 40, (1), pp. 923926.
    5. 5)
      • 11. Bandoh, Y., Guoping, Q., Okuda, M., et al: ‘Recent advances in high dynamic range imaging technology’. Proc. 17th IEEE Int. Conf. Image Processing (ICIP), Hong Kong, 2010, pp. 31253128.
    6. 6)
      • 18. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: ‘Scattering, absorption, and emission of light by small particles’ (Cambridge University Press, Cambridge, UK, 2002).
    7. 7)
      • 27. Vos, J., Walraven, J., van Meeteren, A.: ‘Light profiles of the foveal image of a point source’, Vis. Res., 1976, 16, (2), pp. 215219.
    8. 8)
      • 24. van der Mooren, M., van den Berg, T., Coppens, J., et al: ‘Combining in vitro test methods for measuring light scatter in intraocular lenses’, Biomed. Opt. Express, 2011, 2, (3), pp. 505510.
    9. 9)
      • 7. Mees, E.K.: ‘Photography’ (The MacMillan Company, New York, USA, 1937).
    10. 10)
      • 5. Albani, L., De Paepe, L., Bonfiglio, S., et al: ‘HDR medical display based on dual layer LCD’. Proc. Eighth Int. Symp. Image and Signal Processing and Analysis, Trieste, Italy, 2013, pp. 511515.
    11. 11)
      • 21. Raskar, R., Agrawal, A., Wilson, C.A., et al: ‘Glare aware photography: 4D ray sampling for reducing glare effects of camera lenses’, ACM Trans. Graph., 2008, 27, (3), p. 56.
    12. 12)
      • 20. Talvala, E.V., Adams, A., Horowitz, M., et al: ‘Veiling glare in high dynamic range imaging’, ACM Trans. Graph., 2007, 26, (3), p. 37.
    13. 13)
      • 25. Choi, M., Sharma, D., Zafar, F., et al: ‘Effect of veiling glare on detectability in high-dynamic-range medical images’, J. Disp. Technol., 2014, 10, (5), pp. 420428.
    14. 14)
      • 14. http://www.sim2.com/HDR/, accessed May 2015.
    15. 15)
      • 15. Tisdall, M.D., Damberg, G., Wighton, P., et al: ‘Comparing signal detection between novel high-luminance HDR and standard medical LCD displays’, J. Disp. Technol., 2008, 4, (4), pp. 398409.
    16. 16)
      • 26. Guarnieri, G., Albani, L., Ramponi, G.: ‘Minimum-error splitting algorithm for a dual layer LCD display: part I: background and theory’, J. Disp. Technol., 2008, 4, (4), pp. 383390.
    17. 17)
      • 28. Daw, N.W.: ‘Why after-images are not seen in normal circumstances’, Nature, 1962, 196, pp. 11431145.
    18. 18)
      • 22. Vos, J., van den Berg, T.: ‘Disability glare’, CIE Research note 135/1, 1999.
    19. 19)
      • 12. Seetzen, H., Heidrich, W., Stuerzlinger, W., et al: ‘High dynamic range display systems’. Proc. ACM SIGGRAPH 2004, Los Angeles, 2004, pp. 760768.
    20. 20)
      • 8. Debevec, P., Malik, J.: ‘Recovering high dynamic range radiance maps from photographs’. Proc. ACM SIGGRAPH, Los Angeles, 1997, pp. 369378.
    21. 21)
      • 13. http://www.dolby.com/us/en/technologies/dolby-vision.html, accessed May 2015.
    22. 22)
      • 3. Marchessoux, C., de Paepe, L., Vanovermeire, O., et al: ‘Clinical evaluation of a medical high dynamic range display’, Med. Phys., 2016, 43, (7), pp. 40234031.
    23. 23)
      • 2. Rizzi, A., McCann, J.J.: ‘Glare-limited appearances in HDR images’, J. Soc. Inf. Disp., 2009, 17/1, pp. 312.
    24. 24)
      • 19. Optics and optical instruments: Veiling glare of image forming systems. Definitions and methods of measurement. ISO 9358:1994 Standard, Geneva, 1994.
    25. 25)
      • 16. Yeganeh, H., Wang, Z., Vrscay, E.E.: ‘Adaptive windowing for optimal visualization of medical images based on a structural fidelity measure’. Proc. Ninth Int. Conf. Image Analysis and Recognition, Aveiro, 2012, pp. 321330.
    26. 26)
      • 9. Reinhard, E., Ward, G., Pattanaik, S., et al: ‘High dynamic range imaging: acquisition, display, and image-based lighting’ (Morgan Kaufmann, San Francisco, CA, USA, 2006).
    27. 27)
      • 4. McCann, J.J., Rizzi, A.: ‘The art and science of HDR imaging’ (Wiley, Chichester, UK, 2011).
    28. 28)
      • 1. McCann, J.J., Rizzi, A.: ‘Retinal HDR images: intraocular glare and object size’, J. Soc. Inf. Disp., 2009, 17/11, pp. 913920.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5252
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading