Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Mammographic mass classification using filter response patches

Considering the importance of early diagnosis of breast cancer, a supervised patch-wise texton-based approach has been developed for the classification of mass abnormalities in mammograms. The proposed method is based on texture-based classification of masses in mammograms and does not require segmentation of the mass region. In this approach, patches from filter bank responses are utilised for generating the texton dictionary. The methodology is evaluated on the publicly available Digital Database for Screening Mammography database. Using a naive Bayes classifier, a classification accuracy of 83% with an area under the receiver operating characteristic curve of 0.89 was obtained. Experimental results demonstrated that the patch-wise texton-based approach in conjunction with the naive Bayes classifier constructs an efficient and alternative approach for automatic mammographic mass classification.

References

    1. 1)
      • 25. Eibe, F., Mark, A.H., Ian, H.W.: ‘The WEKA Workbench. Online appendix for ‘Data Mining: practical machine learning tools and techniques’’ (Morgan Kaufmann, Cambridge, MA, USA, 2016, 4th edn.).
    2. 2)
      • 22. Li, Y., Chen Rohde, H.G.K., Yao, C., et al: ‘Texton analysis for mass classification in mammograms’, Pattern Recognit. Lett., 2015, 52, pp. 8793.
    3. 3)
      • 28. Ribli, D., Horváth, A., Unger, Z., et al: ‘Detecting and classifying lesions in mammograms with deep learning’, Sci. Rep., 2017, 8, Article number: 4165, p. 4165.
    4. 4)
      • 5. Oliver, A., Freixenet, J., Marti, J., et al: ‘A review of automatic mass detection and segmentation in mammographic images’, Med. Image Anal., 2010, 14, (2), pp. 87110.
    5. 5)
      • 1. National Health Service-Breast Screening: ‘Professional guidance’, 31 August 2016. Available at https://www.gov.uk/government/collections/breast-screening-professional-guidance.
    6. 6)
      • 24. Gabor, D.: ‘Theory of communication’, J. Inst. Electr. Eng. Part III, Radio Commun. Eng., 1946, 93, (26), pp. 429441.
    7. 7)
      • 23. Heath, M., Bowyer, K., Kopans, D., et al: ‘The digital database for screening mammography’. Proc. of the 5th Int. Workshop on Digital Mammography, Medical Physics Publishing, Toronto, Canada, 2000, pp. 212218.
    8. 8)
      • 15. Ertas, G., Gulcur, H., Aribal, E., et al: ‘Feature extraction from mammographic mass shapes and development of a mammogram database’. 2001 Proc. of the 23rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 2001, Vol. 3, pp. 27522755.
    9. 9)
      • 9. Ball, J.E., Bruce, L.M.: ‘Digital mammographic computer aided diagnosis (CAD) using adaptive level set segmentation’. 29th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007, pp. 49734978.
    10. 10)
      • 6. American College of Radiology BI-RADS Committee and American College of Radiology: ‘Breast imaging reporting and data system’ (American College of Radiology, Reston, VA, USA, 1998).
    11. 11)
      • 8. Mu, T., Nandi, A.K., Rangayyan, R.M.: ‘Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers’, J. Digit. Imaging, 2008, 21, (2), pp. 153169.
    12. 12)
      • 17. Işkl Esener, İ., Ergin, S., Yüksel, T.: ‘A new ensemble of features for breast cancer diagnosis’. 38th Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2015, pp. 11681173.
    13. 13)
      • 18. Buciu, I., Gacsadi, A.: ‘Directional features for automatic tumor classification of mammogram images’, Biomed. Signal Proc. Control, 2011, 6, (4), pp. 370378.
    14. 14)
      • 7. Mudigonda, N.R., Rangayyan, R., Desautels, J.L.: ‘Gradient and texture analysis for the classification of mammographic masses’, IEEE Trans. Med. Imaging, 2000, 19, (10), pp. 10321043.
    15. 15)
      • 21. Kinoshita, S.K., Marques, P.A., Slaets, A.F.F., et al: ‘Detection and characterization of mammographic masses by arpngicial neural network’, Digital Mammography, 1998, 13, pp. 489490.
    16. 16)
      • 12. Rouhi, R., Jafari, M., Kasaei, S., et al: ‘Benign and malignant breast tumors classification based on region growing and CNN segmentation’, Expert Syst. Appl., 2015, 42, (3), pp. 9901002.
    17. 17)
      • 14. Boujelben, A., Chaabani, A.C., Tmar, H., et al: ‘Feature extraction from contours shape for tumor analyzing in mammographic images’, Digit. Image Comput., Tech. Appl., 2009, pp. 395399.
    18. 18)
      • 27. Jadoon, M.M., Zhang, Q., Haq, I.U., et al: ‘Three-class mammogram classification based on descriptive CNN features’, BioMed Res. Int., 2017, 2017, pp. 111.
    19. 19)
      • 19. Varma, M., Zisserman, A.: ‘A statistical approach to texture classification from single images’, Int. J. Comput. Vis., 2005, 62, (1–2), pp. 6181.
    20. 20)
      • 3. Djaroudib, K., Ahmed, A.T., Zidani, A.: ‘Textural approach for mass abnormality segmentation in mammographic images’, 2014, arXiv preprint arXiv:1412.1506.
    21. 21)
      • 10. Campos, L., Silva, A., Barros, A.: ‘Diagnosis of breast cancer in digital mammograms using independent component analysis and neural networks’. Iberoamerican Congress on Pattern Recognition, Berlin, Germany, 2005, pp. 460469.
    22. 22)
      • 2. Tabár, L., Dean, P.B.: ‘Breast cancer-the art and science of early detection with mammography’ (Thieme, New York, 2005), ISBN: 3-13-131.
    23. 23)
      • 26. Jiao, Z., Gao, X., Wang, Y., et al: ‘A deep feature based framework for breast masses classification’, Neurocomputing, 2016, 197, pp. 221231.
    24. 24)
      • 20. Varma, M., Zisserman, A.: ‘A statistical approach to material classification using image patch exemplars’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (11), pp. 20322047.
    25. 25)
      • 4. Elter, M., Horsch, A.: ‘CADx of mammographic masses and clustered microcalcifications: a review’, Med. Phys., 2009, 36, (6), pp. 20522068.
    26. 26)
      • 11. Valarmathie, P., Sivakrithika, V., Dinakaran, K.: ‘Classification of mammogram masses using selected texture, shape and margin features with multilayer perceptron classifier’, Biomed. Res., 2016, pp. S310S313.
    27. 27)
      • 16. Dong, M., Lu, X., Ma, Y., et al: ‘An efficient approach for automated mass segmentation and classification in mammograms’, J. Digit. Imaging, 2015, 28, (5), pp. 613625.
    28. 28)
      • 13. Rangayyan, R.M., El-Faramawy, N.M., Desautels, J.L., et al: ‘Measures of acutance and shape for classification of breast tumors’, IEEE Trans. Med. Imaging, 1997, 16, (6), pp. 799810.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5244
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address