http://iet.metastore.ingenta.com
1887

Deep residual network with regularised fisher framework for detection of melanoma

Deep residual network with regularised fisher framework for detection of melanoma

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Of all the skin cancer that is prevalent, melanoma has the highest mortality rates. Melanoma becomes life threatening when it penetrates deep into the dermis layer unless detected at an early stage, it becomes fatal since it has a tendency to migrate to other parts of our body. This study presents an automated non-invasive methodology to assist the clinicians and dermatologists for detection of melanoma. Unlike conventional computational methods which require (expensive) domain expertise for segmentation and hand crafted feature computation and/or selection, a deep convolutional neural network-based regularised discriminant learning framework which extracts low-dimensional discriminative features for melanoma detection is proposed. Their approach minimises the whole of within-class variance information and maximises the total class variance information. The importance of various subspaces arising in the within-class scatter matrix followed by dimensionality reduction using total class variance information is analysed for melanoma detection. Experimental results on ISBI 2016, MED-NODE, PH2 and the recent ISBI 2017 databases show the efficacy of their proposed approach as compared to other state-of-the-art methodologies.

References

    1. 1)
      • 1. Siegel, R.L., Miller, K.D., Jemal, A.: ‘Cancer statistics, 2018’, CA Cancer J. Clin., 2018, 68, (1), pp. 730.
    2. 2)
      • 2. Satheesha, T.Y., Satyanarayana, D., Giri Prasad, M.N., et al: ‘Melanoma is skin deep: a 3D reconstruction technique for computerized dermoscopic skin lesion classification’, IEEE J. Transl. Eng. Health Med., 2017, 5, pp. 117.
    3. 3)
      • 3. Garnavi, R., Aldeen, M., Bailey, J.: ‘Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (6), pp. 12391252.
    4. 4)
      • 4. Gutman, David, Codella, Noel C.F., Celebi, Emre, et al: ‘Skin lesion analysis toward melanoma detection: a challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC)’. ArXiv preprint arXiv:1605.01397, 2016.
    5. 5)
      • 5. Stolz, W.: ‘ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma’, Eur. J. Dermatol., 1994, 4, pp. 521527.
    6. 6)
      • 6. Menzies, S.W., Ingvar, C., Crotty, K.A., et al: ‘Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features’, Arch. Dermatol., 1996, 132, (10), pp. 11781182.
    7. 7)
      • 7. Henning, J.S., Dusza, S.W., Wang, S.Q., et al: ‘The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy’, J. Am. Acad. Dermatol., 2007, 56, (1), pp. 4552.
    8. 8)
      • 8. Andre, E., Brett, K., Roberto, A.N., et al: ‘Dermatologist-level classification of skin cancer with deep neural networks’, Nature, 2017, 542, (7639), pp. 115118.
    9. 9)
      • 9. Catarina, B., Margarida, R., Mariana, F., et al: ‘Two systems for the detection of melanomas in dermoscopy images using texture and color features’, IEEE Syst. J., 2014, 8, (3), pp. 965979.
    10. 10)
      • 10. Marques, J.S., Barata, C., Mendonça, T.: ‘On the role of texture and color in the classification of dermoscopy images’. 2012 IEEE Annual Int. Conf. Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 2012, pp. 44024405.
    11. 11)
      • 11. Maglogiannis, I., Doukas, C.N.: ‘Overview of advanced computer vision systems for skin lesions characterization’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, (5), pp. 721733.
    12. 12)
      • 12. Barata, C., Celebi, M.E., Marques, J.S.: ‘Improving dermoscopy image classification using color constancy’, IEEE J. Biomed. Health Inf., 2015, 19, (3), pp. 11461152.
    13. 13)
      • 13. Bi, L., Kim, J., et al: ‘Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification’. 2016 IEEE 13th Int. Symp. Biomedical Imaging (ISBI), Prague, Czech Republic, 2016, pp. 10551058.
    14. 14)
      • 14. Faouzi, A., Syed, S.G., Fakhreddine, A., et al: ‘Fusion of structural and textural features for melanoma recognition’, IET Comput. Vis., 2018, 12, (2), pp. 185195.
    15. 15)
      • 15. Abuzaghleh, O., Barkana, B.D., Faezipour, M.: ‘Automated skin lesion analysis based on color and shape geometry feature set for melanoma early detection and prevention’. 2014 IEEE Long Island Systems, Applications and Technology Conf. (LISAT), New York, USA, 2014, pp. 16.
    16. 16)
      • 16. Tim, L., Vincent, N., Richard, G., et al: ‘Dullrazor: a software approach to hair removal from images’, Comput. Biol. Med., 1997, 27, (6), pp. 533543.
    17. 17)
      • 17. Celebi, M.E., Kingravi, E.: ‘A methodological approach to the classification of dermoscopy images’, Comput. Med. Imaging Graph., 2007, 31, (6), pp. 362373.
    18. 18)
      • 18. Barata, C., Marques, J.S., Rozeira, J.: ‘A system for the detection of pigment network in dermoscopy images using directional filters’, IEEE Trans. Biomed. Eng., 2012, 59, (10), pp. 27442754.
    19. 19)
      • 19. Li, X., Aldridge, B., Ballerini, L., et al: ‘Depth data improves skin lesion segmentation’. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, London, UK, 2009, pp. 11001107.
    20. 20)
      • 20. Korotkov, K., Garcia, R.: ‘Computerized analysis of pigmented skin lesions: a review’, Artif. Intell. Med., 2012, 56, (2), pp. 6990.
    21. 21)
      • 21. Shen, D., Wu, G., Suk, H.I.: ‘Deep learning in medical image analysis’, Annu. Rev. Biomed. Eng., 2017, 19, pp. 221248.
    22. 22)
      • 22. Adria, R.L., Xavier, G.-N., Jack, B., et al: ‘Skin lesion classification from dermoscopic images using deep learning techniques’. IEEE 13th IASTED Int. Conf. Biomedical Engineering (BioMed 2017), Innsbruck, Austria, 2017, pp. 4954.
    23. 23)
      • 23. Zhen, Y., Xudong, J., Tianfu, W., et al: ‘Aggregating deep convolutional features for melanoma recognition in dermoscopy images’. Int. Workshop on Machine Learning in Medical Imaging, Quebec City, Quebec, Canada, 2017, pp. 238246.
    24. 24)
      • 24. Lequan, Y., Hao, C., Qi, D., et al: ‘Automated melanoma recognition in dermoscopy images via very deep residual networks’, IEEE Trans. Med. Imaging, 2017, 36, (4), pp. 9941004.
    25. 25)
      • 25. Codella, N.C.F., Nguyen, Q.-B., Pankanti, S., et al: ‘Deep learning ensembles for melanoma recognition in dermoscopy images’, IBM J. Res. Dev., 2017, 61, (4), pp. 51.
    26. 26)
      • 26. He, K., Zhang, X., Ren, S.E.: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770778.
    27. 27)
      • 27. Ebrahimi, M.S., Abadi, H.K.: ‘Study of residual networks for image recognition’, http://cs231n.stanford.edu/reports/2016/pdfs/264_Report.pdf accessed 14 January 2018.
    28. 28)
      • 28. Fukunaga, K.: ‘Introduction to statistical pattern recognition’ (Academic Press, USA, 1991, 2nd edn.).
    29. 29)
      • 29. Martinez, A.M., Kak, A.C.: ‘PCA versus LDA’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 228233.
    30. 30)
      • 30. Xiaofei, H., Shuicheng, Y., Yuxiao, H., et al: ‘Face recognition using Laplacian faces’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328340.
    31. 31)
      • 31. Jiang, X.D., Mandal, B., Kot, A.: ‘Eigenfeature regularization and extraction in face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (3), pp. 383394.
    32. 32)
      • 32. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    33. 33)
      • 33. Liang, Z., Li, Y.: ‘Multiple kernels for generalised discriminant analysis’, IET Comput. Vis., 2010, 4, (2), pp. 117128.
    34. 34)
      • 34. Wei, L., Yunhong, W., Stan Z., Li, et al: ‘Null space approach of Fisher discriminant analysis for face recognition’. European Conf. Computer Vision (ECCV), Prague, Czech Republic, 2004, pp. 3244.
    35. 35)
      • 35. Zhang, L., Xiang, T., Gong, S.: ‘Learning a discriminative null space for person re-identification’. 2016 IEEE Conf. Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016, pp. 12391248.
    36. 36)
      • 36. Mandal, B., Jiang, X.D., Kot, A.: ‘Dimensionality reduction in subspace face recognition’. IEEE Sixth Int. Conf. on Information, Communications and Signal Proc. (ICICS 2007), Singapore, 10-13 Dec 2007.
    37. 37)
      • 37. Cortes, C., Vapnik, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
    38. 38)
      • 38. ‘International Skin Imaging Collaboration Website’. Available at http://www.isdis.net/index.php/isic-project.
    39. 39)
      • 39. Teresa, M., Pedro, M.F., Jorge, S.M., et al: ‘PH 2-A dermoscopic image database for research and benchmarking’. 2013 IEEE 35th Annual Int. Conf. Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013, pp. 54375440.
    40. 40)
      • 40. Ioannis, G., Nynke, M., Sander, L., et al: ‘MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images’, Expert Syst. Appl., 2015, 42, (19), pp. 65786585.
    41. 41)
      • 41. Codella, Noel C.F., Gutman, David, Celebi, Emre, et al: ‘Skin Lesion analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC)’. ArXiv preprint arXiv:1710.05006, 2017.
    42. 42)
      • 42. Yu, Z., Ni, D., et al: ‘Hybrid dermoscopy image classification framework based on deep convolutional neural network and Fisher vector’. 2017 14th IEEE Int. Symp. Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017, pp. 301304.
    43. 43)
      • 43. Gal, Y., Islam, R., Ghahramani, Z.: ‘Deep Bayesian Active Learning with Image Data’. Arxiv preprint arXiv:1703.02910, 2017.
    44. 44)
      • 44. Giuseppe, A., Peter, H., Soyer, V., et al: ‘Interactive atlas of dermoscopy’ (Book and CD-ROM, 2000).
    45. 45)
      • 45. Finlayson, G.D., Trezzi, E.: ‘Shades of gray and colour constancy’. The Twelfth Color Imaging Conf.: Color Science and Engineering Systems, Technologies, Applications, CIC 2004, Scottsdale, AZ, USA, November 9, 2004.
    46. 46)
      • 46. Afonso, M., Julia, T., Michel, F., et al: ‘RECOD Titans at ISIC Challenge 2017’. ArXiv preprint arXiv:1703.04819, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5238
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address