http://iet.metastore.ingenta.com
1887

Analysis of low-correlated spatial gene expression patterns: a clustering approach in the mouse brain data hosted in the Allen Brain Atlas

Analysis of low-correlated spatial gene expression patterns: a clustering approach in the mouse brain data hosted in the Allen Brain Atlas

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Allen Brain Atlas (ABA) provides a similar gene expression dataset by genome-scale mapping of the C57BL/6J mouse brain. In this study, the authors describe a method to extract the spatial information of gene expression patterns across a set of 1047 genes. The genes were chosen from among the 4104 genes having the lowest Pearson correlation coefficient used to compare the expression patterns across voxels in a single hemisphere for available coronal and sagittal volumes. The set of genes analysed in this study is the one discarded in the article by Bohland et al., which was considered to be of a lower consistency, not a reliable dataset. Following a normalisation task with a global and local approach, voxels were clustered using hierarchical and partitioning clustering techniques. Cluster analysis and a validation method based on entropy and purity were performed. They analyse the resulting clusters of the mouse brain for different number of groups and compared them with a classically-defined anatomical reference atlas. The high degree of correspondence between clusters and anatomical regions highlights how gene expression patterns with a low Pearson correlation coefficient between sagittal and coronal sections can accurately identify different neuroanatomical regions.

References

    1. 1)
      • 1. Lein, E.S., Hawrylycz, M.J., Ao, N., et al: ‘Genome-wide atlas of gene expression in the adult mouse brain’, Nature, 2007, 445, (7124), pp. 168176.
    2. 2)
      • 2. Goldowitz, D., Allen Reference Atlas: a digital color brain atlas of the C57BL/6J male mouse – by H. W. Dong’, Genes, Brain Behav., 2010, 9, (1), pp. 128128.
    3. 3)
      • 3. Ng, L., Pathak, S., Kuan, C., et al: ‘Neuroinformatics for genome-wide 3-D gene expression mapping in the mouse brain’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2007, 4, (3), pp. 382393.
    4. 4)
      • 4. Schena, M., Shalon, D., Davis, R.W., et al: ‘Quantitative monitoring of gene expression patterns with a complementary DNA microarray’, Science, 1995, 270, (5235), pp. 467470.
    5. 5)
      • 5. Sanger, F., Nicklen, S., Coulson, A.R.: ‘DNA sequencing with chain-terminating inhibitors’, Proc. Natl. Acad. Sci. USA, 1977, 74, (12), pp. 54635467.
    6. 6)
      • 6. Shendure, J., Ji, H.: ‘Next-generation DNA sequencing’, Nat. Biotechnol., 2008, 26, (10), pp. 11351145.
    7. 7)
      • 7. McKenna, A., Hanna, M., Banks, E., et al: ‘The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data’, Genome Res., 2010, 20, (9), pp. 12971303.
    8. 8)
      • 8. Hawrylycz, M., Ng, L., Feng, D., et al: ‘The Allen Brain Atlas’ (Springer, Berlin, Heidelberg, 2014).
    9. 9)
      • 9. Bohland, J.W., Bokil, H., Pathak, S.D., et al: ‘Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy’, Methods, 2010, 50, (2), pp. 105112.
    10. 10)
      • 10. Eisen, M.B., Spellman, P.T., Brown, P.O., et al: ‘Cluster analysis and display of genome-wide expression patterns’, Proc. Natl. Acad. Sci. USA, 1998, 95, (25), pp. 1486314868.
    11. 11)
      • 11. Visel, A., Thaller, C., Eichele, G.: ‘Genepaint.org: an atlas of gene expression patterns in the mouse embryo’, Nucleic Acids Res., 2004, 32, (DATABASE ISS.), pp. D552D556.
    12. 12)
      • 12. Gong, S., Doughty, M., Harbaugh, C.R., et al: ‘Targeting CRE recombinase to specific neuron populations with bacterial artificial chromosome constructs’, J. Neurosci., 2007, 27, (37), pp. 98179823.
    13. 13)
      • 13. Evans, A.C., Janke, A.L., Collins, D.L., et al: ‘Brain templates and atlases’, NeuroImage, 2012, 62, (2), pp. 911922.
    14. 14)
      • 14. Jones, A.R., Overly, C.C., Sunkin, S.M.: ‘The Allen Brain Atlas: 5 years and beyond’, Nat. Rev. Neurosci., 2009, 10, (11), pp. 821828.
    15. 15)
      • 15. Carson, J.P., Thaller, C., Eichele, G.: ‘A transcriptome atlas of the mouse brain at cellular resolution’, Curr. Opin. Neurobiol., 2002, 12, (5), pp. 562565.
    16. 16)
      • 16. Boline, J., Lee, E.F., Toga, A.W.: ‘Digital atlases as a framework for data sharing’, Front. Neurosci., 2009, 2, (JUL), pp. 100106.
    17. 17)
      • 17. Toga, A.W., Thompson, P.M.: ‘Brain atlases of normal and diseased populations’, Int. Rev. Neurobiol., 2005, 66, pp. 154.
    18. 18)
      • 18. Blake, J.A., Richardson, J.E., Bult, C.J., et al: ‘MGD: The mouse genome database’, Nucleic Acids Res., 2003, 31, (1), pp. 193195.
    19. 19)
      • 19. Ng, L., Bernard, A., Lau, C., et al: ‘An anatomic gene expression atlas of the adult mouse brain’, Nat. Neurosci., 2009, 12, (3), pp. 356362.
    20. 20)
      • 20. Fürth, D., Vaissière, T., Tzortzi, O., et al: ‘An interactive framework for whole-brain maps at cellular resolution’, Nat. Neurosci., 2018, 21, (1), pp. 139153.
    21. 21)
      • 21. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., et al: ‘An anatomically comprehensive atlas of the adult human brain transcriptome’, Nature, 2012, 489, (7416), pp. 391399.
    22. 22)
      • 22. Ballaró, B., Florena, A.M., Franco, V., et al: ‘An automated image analysis methodology for classifying megakaryocytes in chronic myeloproliferative disorders’, Med. Image Anal., 2008, 12, (6), pp. 703712.
    23. 23)
      • 23. Seidlitz, J., Váa, F., Shinn, M., et al: ‘Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation’, Neuron, 2018, 97, (1), pp. 231247.e7.
    24. 24)
      • 24. Puckelwartz, M.J., Pesce, L.L., Nelakuditi, V., et al: ‘Supercomputing for the parallelization of whole genome analysis’, Bioinformatics, 2014, 30, (11), pp. 15081513.
    25. 25)
      • 25. Sargent, R., Fuhrman, D., Critchlow, T., et al: ‘The design and implementation of a database for human genome research’. Proc. 8th Int. Conf. Scientific and Statistical Data Base Management, Stockholm, Sweden, 18–20 June 1996, pp. 220225.
    26. 26)
      • 26. Aziz, R., Verma, C.K., Jha, M., et al: ‘Artificial neural network classification of microarray data using new hybrid gene selection method’, Int. J. Data Mining Bioinf., 2017, 17, (1), pp. 4265.
    27. 27)
      • 27. Peng, H.: ‘Bioimage informatics: a new area of engineering biology. Bioinformatics, 2008, 24, (17), pp. 18271836.
    28. 28)
      • 28. Thomas, J.J., Cook, K.A.: ‘A visual analytics agenda’, IEEE Comput. Graph. Appl., 2006, 26, (1), pp. 1013.
    29. 29)
      • 29. Brain Architecture Web Portal BAP (editor): ‘Brain-toolbox’ (Cold Spring Harbor Laboratory, NY. 11724, 2013). Last update 15 October 2013. Available at http://brainarchitecture.org/allen-atlas-brain-toolbox.
    30. 30)
      • 30. Grange, P., Hawrylycz, M., Mitra, P.P.: ‘Computational neuroanatomy and coexpression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas’, Quant. Biol., 2013, 1, (1), pp. 91100.
    31. 31)
      • 31. Sunkin, S.M., Ng, L., Lau, C., et al: ‘Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system’, Nucleic Acids Res., 2013, 41, (D1), pp. D996D1008.
    32. 32)
      • 32. W DH. Allen Reference Atlas: ‘A digital color BrainAtlas of the C57BL/6J male mouse’, Genes, Brain Behav., 2010, 9, p. 128.
    33. 33)
      • 33. Fakhry, A., Ji, S.: ‘High-resolution prediction of mouse brain connectivity using gene expression patterns’, Methods, 2015, 73, pp. 7178.
    34. 34)
      • 34. Grange, P., Bohland, J.W., Hawrylycz, M., et al: ‘Brain gene expression analysis: a MATLAB toolbox for the analysis of brain-wide gene-expression data’ (ArXiv e-prints, 2012).
    35. 35)
      • 35. Divya, A.I.: ‘Cluster analysis using gene expression data’. 2017 Second Int. Conf. Electrical, Computer and Communication Technologies, (ICECCT), Coimbatore, India, 22–24 Feb 2017, pp. 16.
    36. 36)
      • 36. Wang, Y.X., Gao, Y.L., Liu, J.X., et al: ‘Robust principal component analysis regularized by truncated nuclear norm for identifying differentially expressed genes’, IEEE Trans. Nanobiosc., 2017, 16, (6), pp. 447454.
    37. 37)
      • 37. Noto, T., Barnagian, D., Castro, J.B.: ‘Genome-scale investigation of olfactory system spatial heterogeneity’, PLoS ONE, 2017, 12, (5), pp. 116.
    38. 38)
      • 38. Jain, A.K., Dubes, R.C.: ‘Algorithms for clustering dataPrentice-Hall Advanced Reference Series. (Prentice Hall PTR, Upper Saddle River, NJ, USA, 1988).
    39. 39)
      • 39. Huang, X., Zhang, L., Wang, B., et al: ‘Feature clustering based support vector machine recursive feature elimination for gene selection. Appl. Intell., 2018, 48, (3), pp. 594607.
    40. 40)
      • 40. Lupaşcu, C.A., Tegolo, D.: ‘Automatic unsupervised segmentation of retinal vessels using self-organizing maps and K-means clustering’. (LNCS), (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, 6685 LNBI, pp. 263274.
    41. 41)
      • 41. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: ‘Mutual-information-based registration of medical images: a survey’, IEEE Trans. Med. Imaging, 2003, 22, (8), pp. 9861004.
    42. 42)
      • 42. Zhang, J., Pei, Y., Fletcher, G.H.L., et al: ‘Structural measures of clustering quality on graph samples’. Proc. the 2016 IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, ASONAM'16, San Francisco, CA, USA, 18–21 Aug 2016, pp. 345348.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5217
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5217
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address