http://iet.metastore.ingenta.com
1887

Diffusion sensitivity enhancement filter for raw DWIs

Diffusion sensitivity enhancement filter for raw DWIs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a post-processing filter to enhance diffusion sensitivity, resulting in larger intensity changes in regions with the abrupt transition of local diffusivity in raw diffusion weighted image (DWI) volumes. Weights computed using a non-linear three-dimensional neighbourhood operation are assigned to each voxel within the neighbourhood, with the weighted average representative of the enhanced DWI. The processed images exhibit better distinction among regions with differing levels of physical diffusion. While the resulting improvements in diffusion sensitivity are highlighted with the help of colour maps, parametric maps, and tractography, implications of the filtering process to recover missing information is illustrated in terms of ability to restore portions of fibre tracts which are otherwise absent in the unprocessed diffusion tensor imaging. Quantitative evaluation of the filtering process is performed using a metric representative of the estimated b-value, which is the consolidation machine parameters used for DWI acquisition.

References

    1. 1)
      • 1. Le Bihan, D., Jean-François, M., Poupon, C., et al: ‘Diffusion tensor imaging: concepts and applications’, Magn. Reson. Imaging, 2001, 13, pp. 534546.
    2. 2)
      • 2. Basser, P.J., Jones, D.K.: ‘Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review’, NMR Biomed., 2002, 15, pp. 456467.
    3. 3)
      • 3. Mori, S., Zhang, J.: ‘Principles of diffusion tensor imaging and its applications to basic neuroscience research’, Neuron, 2006, 51, pp. 527539.
    4. 4)
      • 4. Jones, D.K., Leemans, A.: ‘Diffusion tensor imaging’, Magn. Reson. Neuroimaging, 2011, 711, pp. 127144.
    5. 5)
      • 5. Ryan, P.C., Bastinb David, E., Laidlawa, H.: ‘A comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging’, Neuroimage, 2017, 146, pp. 100112.
    6. 6)
      • 6. Breton, M.A., DeKosky, S.T., James, R.C., et al: ‘Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review’, Brain Imaging Behav., 2018, 12, pp. 585612.
    7. 7)
      • 7. Mohammed, K., Emanuele, S., Ben, A.H.: ‘A multicomponent approach to nonrigid registration of diffusion tensor images’, Appl. Intell., 2017, 46, pp. 241253.
    8. 8)
      • 8. Xianhua, Z., Shanshan, H., Weisheng, L.: ‘Color perception of diffusion tensor images using hierarchical manifold learning’, Pattern Recognit., 2017, 63, pp. 583592.
    9. 9)
      • 9. Lazar, M., Weinstein, D.M., Tsuruda, J.S., et al: ‘White matter tractography using diffusion tensor deflection’, Hum. Brain Mapp., 2003, 18, pp. 306321.
    10. 10)
      • 10. Mattiello, J., Basser, P.J., Le Bihan, D.: ‘Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy’, J. Magn. Reson., 1994, 108, pp. 131141.
    11. 11)
      • 11. Basser, P.J., Pierpaoli, C.: ‘Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI’, J. Magn. Reson., 1996, 111, pp. 209219.
    12. 12)
      • 12. Pierpaoli, C., Jezzard, P., Basser, P.J., et al: ‘Diffusion tensor MR imaging of the human brain’, Radiology, 1996, 201, pp. 637648.
    13. 13)
      • 13. Matteo, B., Michiel, C., Krikor, D., et al: ‘Improved tractography using asymmetric fibre orientation distributions’, Neuroimage, 2017, 158, pp. 205218.
    14. 14)
      • 14. Walid, I.E., Fan, Z., Prashin, U., et al: ‘White matter tractography for neurosurgical planning: a topography-based review of the current state of the art’, Neuroimage Clin., 2017, 15, pp. 659672.
    15. 15)
      • 15. Miguel, G., Claudio, R., Josselin, H., et al: ‘Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography’, Neuroimage, 2017, 147, pp. 703725.
    16. 16)
      • 16. Po-Shan, W., Chien-Li, Y., Chia-Feng, L., et al: ‘The involvement of supratentorial white matter in multiple system atrophy: a diffusion tensor imaging tractography study’, Acta Neurol. Belg., 2017, 117, pp. 213220.
    17. 17)
      • 17. Evangelia, T., Randall, E., Nader, P.: ‘Using probabilistic tractography to target the subcallosal cingulate cortex in patients with treatment resistant depression’, Psychiatry Res., Neuroimaging, 2017, 261, pp. 7274.
    18. 18)
      • 18. Mattiello, J., Basser, P.J., Le Bihan, D.: ‘The b matrix in diffusion tensor echo-planar imaging’, Magn. Reson. Med., 1997, 37, pp. 292300.
    19. 19)
      • 19. Basser, P.J., Pierpaoli, C.: ‘A simplified method to measure the diffusion tensor from seven MR images’, Magn. Reson. Med., 1998, 39, pp. 928934.
    20. 20)
      • 20. Papadakis, N.G., Xing, D., Huang, C.L., et al: ‘A comparative study of acquisition schemes for diffusion tensor imaging using MRI’, J. Magn. Reson., 1999, 137, pp. 6782.
    21. 21)
      • 21. Ming-Chung, C., Fong, K.E., Mori, S.: ‘Effects of b-value and echo time on magnetic resonance diffusion tensor imaging-derived parameters at 1.5 T: a voxel-wise study’, J. Med. Biol. Eng., 2013, 33, pp. 4550.
    22. 22)
      • 22. Kim, H.J., Choi, C.G., Lee, D.H., et al: ‘High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5 T’, Am. J. Neuroradiol., 2005, 26, pp. 208215.
    23. 23)
      • 23. Assaf, Y., Ben-Bashat, D., Chapman, J., et al: ‘High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis’, Magn. Reson. Med., 2002, 47, pp. 115126.
    24. 24)
      • 24. Jones, D.K.: ‘The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: an Monte Carlo study’, Magn. Reson. Med., 2004, 51, pp. 807815.
    25. 25)
      • 25. Zhang, N., Zhen-Sheng, D., Fang, W., et al: ‘The effect of different number of diffusion gradients on SNR of diffusion tensor-derived measurement maps’, J. Biomed. Sci. Eng., 2009, 2, pp. 96101.
    26. 26)
      • 26. Ni, H., Kavcic, V., Zhu, T., et al: ‘Effects of number of diffusion gradients on derived diffusion tensor imaging indices in human brain’, Am. J. Neuroradiol., 2006, 27, pp. 17761781.
    27. 27)
      • 27. Gudbjartsson, H., Patz, S.: ‘The Rician distribution of noisy MRI data’, Magn. Reson. Med., 1995, 34, pp. 910914.
    28. 28)
      • 28. Bastin, M.E., Armitage, P.A., Marshall, I.: ‘A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging’, Magn. Reson. Med., 1998, 16, pp. 773785.
    29. 29)
      • 29. Basser, P.J., Pajevic, S.: ‘Statistical artifacts in diffusion tensor MRI caused by background noise’, Magn. Reson. Med., 2000, 44, pp. 4150.
    30. 30)
      • 30. Skare, S., Li, T., Nordell, B., et al: ‘Noise considerations in the determination of diffusion tensor anisotropy’, Magn. Reson. Med., 2000, 18, pp. 659669.
    31. 31)
      • 31. Dietrich, O., Heiland, S., Sartor, K.: ‘Noise correction for the exact determination of apparent diffusion coefficients at low SNR’, Magn. Reson. Med., 2001, 45, pp. 448453.
    32. 32)
      • 32. Anderson, A.W.: ‘Theoretical analysis of the effects of noise on diffusion tensor imaging’, Magn. Reson. Med., 2001, 46, pp. 11741188.
    33. 33)
      • 33. Jones, D.K., Basser, P.J.: ‘Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data’, Magn. Reson. Med., 2004, 52, pp. 979993.
    34. 34)
      • 34. Mori, S.: ‘Introduction to diffusion tensor imaging’ (Elsevier, Amsterdam, 2007).
    35. 35)
      • 35. Akram, A., Michael, U.: ‘Wavelets in medicine and biology’ (Elsevier, Amsterdam, 2007).
    36. 36)
      • 36. Parker, G.M.J., Schnabel, J.A., Symms, M.R., et al: ‘Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging’, Magn. Reson. Med., 2000, 11, pp. 702710.
    37. 37)
      • 37. McGraw, T., Vemuri, B.C., Chen, Y., et al: ‘DT-MRI denoising and neuronal fiber tracking’, Magn. Reson. Med., 2004, 8, pp. 95111.
    38. 38)
      • 38. Chen, B., Hsu, E.: ‘Noise removal in magnetic resonance diffusion tensor imaging’, Magn. Reson. Med., 2005, 54, pp. 393407.
    39. 39)
      • 39. McGraw, T., Vemuri, B., Ozarslan, E., et al: ‘Variational denoising of diffusion weighted MRI’, Inverse Probl. Imaging, 2009, 3, pp. 625648.
    40. 40)
      • 40. Perona, P., Malik, J.: ‘Scale-space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, pp. 629639.
    41. 41)
      • 41. Ding, Z., Gore, J.C., Anderson, A.W.: ‘Reduction of noise in diffusion tensor images using anisotropic smoothing’, Magn. Reson. Med., 2005, 53, pp. 485490.
    42. 42)
      • 42. Xu, Q., Anderson, A., Gore, J., et al: ‘Efficient anisotropic filtering of diffusion tensor images’, Magn. Reson. Imaging, 2010, 28, pp. 200211.
    43. 43)
      • 43. Deepak, M., Santanu, C., Mukul, S., et al: ‘Edge probability and pixel relativity-based speckle reducing anisotropic diffusion’, IEEE Trans. Image Process., 2018, 27, pp. 649664.
    44. 44)
      • 44. Buades, A., Coll, B., Morel, J.M.: ‘A non-local algorithm for image denoising’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2005, vol. 2, pp. 6065.
    45. 45)
      • 45. Wiest-Daesslé, N., Prima, S., Coupé, P., et al: ‘Nonlocal means variants for denoising of diffusion-weighted and diffusion tensor MRI’, Proc. MICCAI, 2007, 10, pp. 344351.
    46. 46)
      • 46. Coupé, P., Yger, P., Prima, S., et al: ‘An optimized blockwise nonlocal means denoising filter for 3D magnetic resonance images’, IEEE Trans. Med. Imaging, 2008, 27, pp. 425441.
    47. 47)
      • 47. Descoteaux, M., Wiest-Daesslé, N., Prima, S., et al: ‘Impact of Rician adapted non-local means filtering on HARDI’, Proc. MICCAI, 2008, 11, pp. 122130.
    48. 48)
      • 48. Manjón, J.V., Coupé, P., Martí-Bonmatí, L., et al: ‘Adaptive non-local means denoising of MR images with spatially varying noise levels’, Magn. Reson. Imaging, 2010, 31, pp. 192203.
    49. 49)
      • 49. Hao, Z., Dong, Z., Hua, Z., et al: ‘Applications of nonlocal means algorithm in low-dose X-ray CT image processing and reconstruction: a review’, Med. Phys., 2017, 44, pp. 11681185.
    50. 50)
      • 50. Nowak, R.D.: ‘Wavelet-based Rician noise removal for magnetic resonance imaging’, IEEE Trans. Image Process., 1999, 8, pp. 14081419.
    51. 51)
      • 51. Wirestam, R., Bibic, A., Lätt, J., et al: ‘Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging’, Magn. Reson. Med., 2006, 56, pp. 11141120.
    52. 52)
      • 52. Coupé, P., Hellier, P., Prima, S., et al: ‘3D wavelet subbands mixing for image denoising’, Int. J. Biomed. Imaging, 2008, p. 11.
    53. 53)
      • 53. Martin-Fernandez, F., MuÃśoz-Moreno, E., Cammoun, L., et al: ‘Sequential anisotropic multichannel Wiener filtering with Rician bias correction applied to 3D regularization of DWI data’, Med. Image Anal., 2009, 13, pp. 1935.
    54. 54)
      • 54. Stejskal, E., Tanner, J.: ‘Spin diffusion measurements: spin echoes in the presence of time-dependent field gradient’, J. Chem. Phys., 1965, 42, pp. 282292.
    55. 55)
      • 55. Moseley, M.E.: ‘Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system’, Radiology, 1990, 176, pp. 439445.
    56. 56)
      • 56. Basser, P., Mattiello, J., LeBihan, D.: ‘Estimation of the effective self-diffusion tensor from NMR spin echo’, J. Magn. Reson. B, 1994, 103, pp. 247254.
    57. 57)
      • 57. Beaulieu, C., Allen, P.S.: ‘Determinants of anisotropic water diffusion in nerves’, Magn. Reson. Med., 1994, 31, pp. 394400.
    58. 58)
      • 58. Jones, D.K., Horsfield, M.A., Simmons, A.: ‘Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging’, Magn. Reson. Med., 1999, 42, pp. 515525.
    59. 59)
      • 59. Frank, L.: ‘Anisotropy in high angular resolution diffusion-weighted MRI’, Magn. Reson. Med., 2001, 45, pp. 935939.
    60. 60)
      • 60. Frank, L.: ‘Characterization of anisotropy in high angular resolution diffusion-weighted MRI’, Magn. Reson. Med., 2002, 47, pp. 10831099.
    61. 61)
      • 61. Basser, P., Pajevic, S., Pierpaoli, C., et al: ‘In vivo fiber tractography using DT-MRI data’, Magn. Reson. Med., 2000, 44, pp. 625632.
    62. 62)
      • 62. Mori, S., Zijl, P.V.: ‘Fiber tracking: principles and strategies as a technical review’, NMR Biomed., 2002, 15, pp. 468480.
    63. 63)
      • 63. Parker, G.J.M., Wheeler-Kingshott, C.A.M., Barker, G.J.: ‘Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging’, IEEE Trans. Med. Imaging, 2002, 21, pp. 505512.
    64. 64)
      • 64. Friman, O., Farneback, G., Westin, C.F.: ‘A Bayesian approach for white matter tractography’, IEEE Trans. Med. Imaging, 2006, 25, pp. 965978.
    65. 65)
      • 65. Jiang, H., van Zijl, P.C.M., Kim, J., et al: ‘DTI studio: a resource program for diffusion tensor computation and fiber bundle tracking’, Comput. Methods Programs Med., 2006, 81, pp. 106116.
    66. 66)
      • 66. Zalesky, A.: ‘DT-MRI fiber tracking: a shortest paths approach’, IEEE Trans. Med. Imaging, 2008, 27, pp. 14581471.
    67. 67)
      • 67. Descoteaux, M., Deriche, R., Knosche, T.R., et al: ‘Deterministic and probabilistic tractography based on complex fibre orientation distributions’, IEEE Trans. Med. Imaging, 2009, 28, pp. 269286.
    68. 68)
      • 68. Pajevic, S., Pierpaoli, C.: ‘Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain’, Magn. Reson. Med., 1999, 42, pp. 526540.
    69. 69)
      • 69. Westin, C.F., Maier, S.E., Mamata, H., et al: ‘Processing and visualization for diffusion tensor MRI’, Med. Image Anal., 2002, 6, pp. 93108.
    70. 70)
      • 70. Horsfield, M.A., Jones, D.K.: ‘Applications of diffusion-weighed and diffusion tensor MRI to white matter diseases’, NMR Biomed., 2002, 15, pp. 570577.
    71. 71)
      • 71. Masutani, Y., Aoki, S., Abe, O., et al: ‘MR diffusion tensor imaging: recent advance and new techniques for diffusion tensor visualization’, Eur. J. Radiol., 2003, 46, pp. 5366.
    72. 72)
      • 72. Dong, Q., Welsh, R.C., Chenevert, T.L., et al: ‘Clinical applications of diffusion tensor imaging’, Magn. Reson. Imaging, 2004, 19, pp. 618.
    73. 73)
      • 73. Anderson, W.: ‘Measurement of fiber orientation distributions using high angular resolution diffusion imaging’, Magn. Reson. Med., 2005, 54, pp. 11941206.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5213
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address