http://iet.metastore.ingenta.com
1887

Fine-grained recognition of maritime vessels and land vehicles by deep feature embedding

Fine-grained recognition of maritime vessels and land vehicles by deep feature embedding

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent advances in large-scale image and video analysis have empowered the potential capabilities of visual surveillance systems. In particular, deep learning-based approaches bring in substantial benefits in solving certain computer vision problems such as fine-grained object recognition. Here, the authors mainly concentrate on classification and identification of maritime vessels and land vehicles, which are the key constituents of visual surveillance systems. Employing publicly available data sets for maritime vessels and land vehicles, the authors aim to improve visual recognition. Specifically, the authors focus on five tasks regarding visual recognition; coarse-grained classification, fine-grained classification, coarse-grained retrieval, fine-grained retrieval, and verification. To increase the performance in these tasks, the authors utilise a multi-task learning framework and present a novel loss function which simultaneously considers deep feature learning and classification by exploiting the available hierarchical labels of individual samples and the global statistics of distances between the data pairs. The authors observe that the proposed multi-task learning model improves the fine-grained recognition performance on MARVEL and Stanford Cars data sets, compared to training of a model targeting a single recognition task.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5187
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address