http://iet.metastore.ingenta.com
1887

Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition

Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is challenging to recognize smoke from visual scenes due to large variations of smoke colors, textures and shapes. To improve robustness, we propose a novel feature extraction method based on similarity and dissimilarity matching measures of Local Binary Patterns (LBP). Given two bit-sequences of an LBP code pair, the similarity and dissimilarity matching measures are defined as the ratios of the 1–1 bitwise matching number to the 0–0 bitwise matching number and the 1–0 number to the 0–1 number, respectively. To capture local code variations, we calculate the measures between LBP codes of a center pixel and its neighbors. Then we compare each measure with its global mean to propose Similarity Matching based Local Binary Patterns (SMLBP) and Dissimilarity Matching based Local Binary Patterns (DMLBP). Since SMLBP and DMLBP extract spatial variations of the 1st order LBP codes, they actually represent the 2nd order variations of pixel values. Furthermore, we adopt different mapping modes and multi-scale neighborhoods to obtain rotation and scale invariances. Finally, we concatenate the histograms of LBP, SMLBP and DMLBP to generate a feature vector containing 1st and 2nd order information. Experiments show that our method obviously outperforms existing methods.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5164
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address