http://iet.metastore.ingenta.com
1887

Restoration algorithm for noisy complex illumination

Restoration algorithm for noisy complex illumination

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Although promising results have been achieved in the restoration of complex illumination images with the Retinex algorithm, there are still some drawbacks in the processing of Retinex. Considering the noise characteristics of complex illumination images, in this study, we propose a novel restoration algorithm for noisy complex illumination, which combines guided adaptive multi-scale Retinex (GAMSR) and improvement BayesShrink threshold filtering (IBTF) based on double-density dual-tree complex wavelet transform (DDDTCWT) domain. Extensive restoration experiments are conducted on three typical types images and the same image with different noises. On the basis of a series of evaluation indexes, we compare our method to those of state-of-the-art algorithms. The results show that (i) SSIM of the proposed IBTF is superior to traditional Bayes threshold method by 15% as the standard variance is 100. (ii) PSNR of the proposed GAMSR enhances 15% to traditional MSR. (iii) The clarity of final results for restoration speeds up three times than that of original images, and the information entropy is improved slightly too. Therefore, the proposed method can effectively enhance the details, edges and textures of the image under complex illumination and noises.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5163
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address