http://iet.metastore.ingenta.com
1887

Regularised transfer learning for hyperspectral image classification

Regularised transfer learning for hyperspectral image classification

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a transfer learning method for addressing the insufficient sample problem in hyperspectral image classification. In order to find common feature representation for both the source domain and target domain, we introduce a regularisation based on Bregman divergence into the objective function of the subspace learning algorithm, which can minimise the Bregman divergence between the distribution of training samples in the source domain and the test samples in the target domain. Hyperspectral image with biased sampling is used to evaluate the effectiveness of the proposed method. The results show that the proposed method can achieve a higher classification accuracy than traditional subspace learning methods under the condition of biased sampling.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.5145
Loading

Related content

content/journals/10.1049/iet-cvi.2018.5145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address