High variation removal for background subtraction in traffic surveillance systems

High variation removal for background subtraction in traffic surveillance systems

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Background subtraction has been a fundamental task in video analytics and smart surveillance applications. In the field of background subtraction, Gaussian mixture model is a canonical model for many other methods. However, the unconscious learning of this model often leads to erroneous motion detection under high variation scenes. This article proposes a new method that incorporates entropy estimation and a removal framework into the Gaussian mixture model to improve the performance of background subtraction. Firstly, entropy information is computed for each pixel of a frame to classify frames into silent or high variation categories. Secondly, the removal framework is used to determine which frames from the background subtraction process are updated. The proposed method produces precise results with fast execution time, which are two critical factors in surveillance systems for more advanced tasks. The authors used two publicly available test sequences from the 2014 Change Detection and Scene background modelling data sets and internally collected data sets of scenes with dense traffic.

Related content

This is a required field
Please enter a valid email address