http://iet.metastore.ingenta.com
1887

Deblurring retinal optical coherence tomography via a convolutional neural network with anisotropic and double convolution layer

Deblurring retinal optical coherence tomography via a convolutional neural network with anisotropic and double convolution layer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Various image pre-processing tasks in optical coherence tomography (OCT) systems involve reversing degradation effects (e.g. deblurring). Current deblurring research mainly focuses on how to build suitable degradation models using deconvolution operators. However, model-based solutions may not work well in many scenarios. To solve this problem, the authors propose a non-model architecture, called a deep convolutional neural network, to address parameter-free situations. The proposed solution employs a deep learning strategy to bridge the gap between traditional model-based methods and neural network architectures. Experiments on retinal OCT images demonstrate that the proposed approach achieves superior performance compared with the state-of-the-art model-based OCT deblurring methods.

References

    1. 1)
      • 1. Huang, D., Swanson, E.A., Lin, C.P., et al: ‘Optical coherence tomography’, Science, 1991, 254, (5035), pp. 11781181.
    2. 2)
      • 2. Schmitt, J.M.: ‘Optical coherence tomography (OCT): a review’, IEEE J. Sel. Top. Quantum Electron., 2002, 5, (4), pp. 12051215.
    3. 3)
      • 3. Iester, M., Cordano, C., Costa, A.D., et al: ‘Effectiveness of time domain and spectral domain optical coherence tomograph to evaluate eyes with and, without optic neuritis in multiple sclerosi patients’, J Mult. Scler., 2016, 3, (173), pp. 14.
    4. 4)
      • 4. Kanagasingam, Y., Bhuiyan, A., Abramoff, M.D., et al: ‘Progress on retinal image analysis for age related macular degeneration’, Prog. Retin. Eye Res., 2014, 38, (1), pp. 2042.
    5. 5)
      • 5. Nagy, Z.Z., Ecsedy, M., Kovcs, I., et al: ‘Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted and standard cataract surgery’, J. Cataract Refract. Surg., 2012, 38, (6), pp. 941946.
    6. 6)
      • 6. Spaide, R.F., Klancnik, J.M., Cooney, M.J.: ‘Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography’, JAMA Ophthalmol., 2015, 133, (1), pp. 4550.
    7. 7)
      • 7. Liu, Y., Liang, Y., Mu, G., et al: ‘Deconvolution methods for image deblurring in optical coherence tomography’, J. Opt. Soc. Am. A, Opt. Image Sci. Vis., 2009, 26, (1), pp. 7277.
    8. 8)
      • 8. Labiau, S., David, G., Gigan, S., et al: ‘Defocus test and defocus correction in full-field optical coherence tomography’, Opt. Lett., 2009, 34, (10), pp. 15761578.
    9. 9)
      • 9. Kraus, M.F., Potsaid, B., Mayer, M.A., et al: ‘Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns’, Biomed. Opt. Express, 2012, 3, (6), pp. 11821199.
    10. 10)
      • 10. Robinson, D.: ‘The mechanics of human saccadic eye movement’, J. Physiol., 1964, 174, (2), pp. 245264.
    11. 11)
      • 11. Potsaid, B., Gorczynska, I., Srinivasan, V.J., et al: ‘Ultrahigh speed spectral/Fourier domain oct ophthalmic imaging at 70,000 to 312,500 axial scans per second’, Opt. Express, 2008, 16, (19), pp. 1514915169.
    12. 12)
      • 12. Ferguson, R.D., Hammer, D.X., Paunescu, L.A., et al: ‘Tracking optical coherence tomography’, Opt. Lett., 2004, 29, (18), pp. 21392141.
    13. 13)
      • 13. Hammer, D.X., Ferguson, R.D., Magill, J.C., et al: ‘Active retinal tracker for clinical optical coherence tomography systems’, J. Biomed. Opt., 2005, 10, (2), pp. 0240380002403811.
    14. 14)
      • 14. Zhang, Y., Yu, C., David, D.L.: ‘Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images’, Opt. Express, 2016, 24, (13), pp. 1389413905.
    15. 15)
      • 15. Levin, A., Fergus, R., Durand, F., et al: ‘Deconvolution using natural image priors’, ACM Trans. Graph., 2007, 26, pp. 02.
    16. 16)
      • 16. Ruiz, P., Zhou, X., Mateos, J., et al: ‘Variational Bayesian blind image deconvolution: a review’, Digit. Signal Process., 2015, 47, pp. 116127.
    17. 17)
      • 17. Wiener, N.: ‘Smoothing of stationary time series’, Eng. Appl., (Wiley, New York, 1949).
    18. 18)
      • 18. Richardson, W.H.: ‘Bayesian-based iterative method of image restoration’, J. Opt. Soc. Am., 1972, 62, (1), pp. 5559.
    19. 19)
      • 19. Fergus, R., William, T.: ‘Removing camera shake from a single photograph’. Proc. of ACM Transactions on Graphics, Boston, MA, USA, 2006, pp. 787794.
    20. 20)
      • 20. Lee, J., Ho, Y.: ‘High-quality non-blind image deconvolution with adaptive regularization’, J. Vis. Commun. Image Represent., 2011, 22, (7), pp. 653663.
    21. 21)
      • 21. Cho, S., Wang, J., Lee, S.: ‘Handling outliers in non-blind image deconvolution’. IEEE Proc. of the Int. Conf. on Computer Vision, Barcelona, Spain, 2011, pp. 495502.
    22. 22)
      • 22. Kundur, D., Hatzinakos, D.: ‘Blind image deconvolution’, IEEE Signal Process. Mag., 1996, 13, (3), pp. 4364.
    23. 23)
      • 23. Ahmed, A., Recht, B., Romberg, J.: ‘Blind deconvolution using convex programming’, IEEE Trans. Inf. Theory, 2014, 60, (3), pp. 17111732.
    24. 24)
      • 24. Perrone, D.: ‘Total variation blind deconvolution: the devil is in the details’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2014, pp. 29092916.
    25. 25)
      • 25. Schuler, C., Harold, C.B., Stefan, H.: ‘A machine learning approach for non-blind image deconvolution’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 10671074.
    26. 26)
      • 26. Kenig, T., Kam, Z., Feuer, A.: ‘Blind image deconvolution using machine learning for three-dimensional microscopy’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21912204.
    27. 27)
      • 27. Ralston, T.S., Marks, D.L., Kamalabadi, F., et al: ‘Gaussian beam deconvolution in optical coherence tomography’. Proc. of SPIE, San Diego, CA, USA, 2005, pp. 112.
    28. 28)
      • 28. Wang, K., Ding, Z., Chen, M., et al: ‘Deconvolution with fall-off compensated axial point spread function in spectral domain optical coherence tomography’, Opt. Commun., 2011, 284, (12), pp. 31733180.
    29. 29)
      • 29. Hojjatoleslami, S., Avanaki, M., Podoleanu, A.G.: ‘Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm’, Appl. Opt., 2013, 52, (23), pp. 56635670.
    30. 30)
      • 30. Xu, L., Ren, J.S.J., Liu, C., et al: ‘Deep convolutional neural network for image deconvolution’. Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2014, pp. 17901798.
    31. 31)
      • 31. Wieschollek, P., Schölkopf, B., Lensch, H.P.A., et al: ‘End-to-end learning for image burst deblurring’. Asian Conf. on Computer Vision, 2016, pp. 3551.
    32. 32)
      • 32. LeCun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’. Proc. IEEE, 1998, 86, (11), pp. 22782324.
    33. 33)
      • 33. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
    34. 34)
      • 34. Bengio, Y., Lamblin, P., Popovici, D., et al: ‘Greedy layer-wise training of deep networks’, Adv. Neural Inf. Process. Syst., 2007, 19, pp. 153160.
    35. 35)
      • 35. Dahl, G., Mohamed, A.R., Hinton, G.E.: ‘Phone recognition with the mean-covariance restricted Boltzmann machine’. Proc. of Advances in Neural Information Processing Systems, Vancouver, Canada, 2010, pp. 469477.
    36. 36)
      • 36. Dahl, G.E., Yu, D., Deng, L., et al: ‘Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition’, IEEE Trans. Audio, Speech, Lang. Process., 2012, 20, (1), pp. 3042.
    37. 37)
      • 37. Deng, L., Seltzer, M.L., Yu, D., et al: ‘Binary coding of speech spectrograms using a deep auto-encoder’. Proc. of Interspeech, Makuhari, Japan, 2010, pp. 16921695.
    38. 38)
      • 38. Chan, W., Jaitly, N., Le, Q.: ‘Listen, attend and spell: A neural network for large vocabulary conversational speech recognition’. Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 49604964.
    39. 39)
      • 39. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: ‘Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription’, Chem. A, Eur. J., 2012, 18, (13), pp. 39813991.
    40. 40)
      • 40. Collobert, R., Weston, J., Bottou, L., et al: ‘Natural language processing (almost) from scratch’, J. Mach. Learn. Res., 2011, 12, (1), pp. 24932537.
    41. 41)
      • 41. Weston, J., Bengio, S., Usunier, N.: ‘Large scale image annotation: learning to rank with joint word-image embeddings’, Mach. Learn., 2010, 81, (1), pp. 2135.
    42. 42)
      • 42. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, 2014, arXiv preprint arXiv:1409.1556.
    43. 43)
      • 43. Jia, Y., Shelhamer, E., Donahue, J., et al: ‘Caffe: convolutional architecture for fast feature embedding’. Proc. of the 22nd ACM Int. Conf. on Multimedia, Orlando, FL, USA, 2014, pp. 675678.
    44. 44)
      • 44. Molchanov, P.: ‘Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural network’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 42074215.
    45. 45)
      • 45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Proc. of Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 10971105.
    46. 46)
      • 46. Socher, R., Huval, B., Bath, B., et al: ‘Convolutional-recursive deep learning for 3d object classification’. Proc. of Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 665673.
    47. 47)
      • 47. Simonyan, K., Vedaldi, A., Zisserman, A.: ‘Deep inside convolutional networks: visualising image classification models and saliency maps’, 2013, arXiv preprint arXiv:1312.6034.
    48. 48)
      • 48. Karpathy, A., Toderici, G., Shetty, S., et al: ‘Large-scale video classification with convolutional neural networks’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 17251732.
    49. 49)
      • 49. Turaga, S.C., Murray, J.F., Jain, V., et al: ‘Convolutional networks can learn to generate affinity graphs for image segmentation’, Neural Comput., 2010, 22, (2), pp. 511538.
    50. 50)
      • 50. Prasoon, A., Petersen, K., Igel, C., et al: ‘Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network’. Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2013, pp. 246253.
    51. 51)
      • 51. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 34313440.
    52. 52)
      • 52. Jain, V., Seung, S.: ‘Natural image denoising with convolutional networks’. Proc. of Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada, 2009, pp. 769776.
    53. 53)
      • 53. Boscaini, D.: ‘Learning shape correspondence with anisotropic convolutional neural networks’. arXiv preprint, 2016, arXiv 1605.06437.
    54. 54)
      • 54. Savakis, A.E., Trussell, H.J.: ‘On the accuracy of PSF representation in image restoration’, IEEE Trans. Image Process., 1993, 2, (2), pp. 252259.
    55. 55)
      • 55. Zhang, P., Liu, H., Ding, Y.: ‘Dynamic bee colony algorithm based on multi-species co-evolution’, Appl. Intell., 2014, 40, (3), pp. 427440.
    56. 56)
      • 56. Steenken, S., Behrens, G., Schulte-Frohlinde, D.: ‘Heterogeneous computing and grid scheduling with parallel biologically inspired hybrid heuristics’, Trans. Inst. Meas. Control, 2014, 36, (6), pp. 805814.
    57. 57)
      • 57. Wang, J., Gong, B., Liu, H., et al: ‘Multidisciplinary approaches to artificial swarm intelligence for heterogeneous computing and cloud scheduling’, Appl. Intell., 2015, 43, (3), pp. 662675.
    58. 58)
      • 58. Lian, J., Zheng, Y., Jiao, W., et al: ‘Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information’, Med. Biol. Eng. Comput., 2017, 6, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.0016
Loading

Related content

content/journals/10.1049/iet-cvi.2018.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address