http://iet.metastore.ingenta.com
1887

Deblurring retinal optical coherence tomography via a convolutional neural network with anisotropic and double convolution layer

Deblurring retinal optical coherence tomography via a convolutional neural network with anisotropic and double convolution layer

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Various image pre-processing tasks in optical coherence tomography (OCT) systems involve reversing degradation effects (e.g. deblurring). Current deblurring research mainly focuses on how to build suitable degradation models using deconvolution operators. However, model-based solutions may not work well in many scenarios. To solve this problem, the authors propose a non-model architecture, called a deep convolutional neural network, to address parameter-free situations. The proposed solution employs a deep learning strategy to bridge the gap between traditional model-based methods and neural network architectures. Experiments on retinal OCT images demonstrate that the proposed approach achieves superior performance compared with the state-of-the-art model-based OCT deblurring methods.

References

    1. 1)
      • D. Huang , E.A. Swanson , C.P. Lin .
        1. Huang, D., Swanson, E.A., Lin, C.P., et al: ‘Optical coherence tomography’, Science, 1991, 254, (5035), pp. 11781181.
        . Science , 5035 , 1178 - 1181
    2. 2)
      • J.M. Schmitt .
        2. Schmitt, J.M.: ‘Optical coherence tomography (OCT): a review’, IEEE J. Sel. Top. Quantum Electron., 2002, 5, (4), pp. 12051215.
        . IEEE J. Sel. Top. Quantum Electron. , 4 , 1205 - 1215
    3. 3)
      • M. Iester , C. Cordano , A.D. Costa .
        3. Iester, M., Cordano, C., Costa, A.D., et al: ‘Effectiveness of time domain and spectral domain optical coherence tomograph to evaluate eyes with and, without optic neuritis in multiple sclerosi patients’, J Mult. Scler., 2016, 3, (173), pp. 14.
        . J Mult. Scler. , 173 , 1 - 4
    4. 4)
      • Y. Kanagasingam , A. Bhuiyan , M.D. Abramoff .
        4. Kanagasingam, Y., Bhuiyan, A., Abramoff, M.D., et al: ‘Progress on retinal image analysis for age related macular degeneration’, Prog. Retin. Eye Res., 2014, 38, (1), pp. 2042.
        . Prog. Retin. Eye Res. , 1 , 20 - 42
    5. 5)
      • Z.Z. Nagy , M. Ecsedy , I. Kovcs .
        5. Nagy, Z.Z., Ecsedy, M., Kovcs, I., et al: ‘Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted and standard cataract surgery’, J. Cataract Refract. Surg., 2012, 38, (6), pp. 941946.
        . J. Cataract Refract. Surg. , 6 , 941 - 946
    6. 6)
      • R.F. Spaide , J.M. Klancnik , M.J. Cooney .
        6. Spaide, R.F., Klancnik, J.M., Cooney, M.J.: ‘Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography’, JAMA Ophthalmol., 2015, 133, (1), pp. 4550.
        . JAMA Ophthalmol. , 1 , 45 - 50
    7. 7)
      • Y. Liu , Y. Liang , G. Mu .
        7. Liu, Y., Liang, Y., Mu, G., et al: ‘Deconvolution methods for image deblurring in optical coherence tomography’, J. Opt. Soc. Am. A, Opt. Image Sci. Vis., 2009, 26, (1), pp. 7277.
        . J. Opt. Soc. Am. A, Opt. Image Sci. Vis. , 1 , 72 - 77
    8. 8)
      • S. Labiau , G. David , S. Gigan .
        8. Labiau, S., David, G., Gigan, S., et al: ‘Defocus test and defocus correction in full-field optical coherence tomography’, Opt. Lett., 2009, 34, (10), pp. 15761578.
        . Opt. Lett. , 10 , 1576 - 1578
    9. 9)
      • M.F. Kraus , B. Potsaid , M.A. Mayer .
        9. Kraus, M.F., Potsaid, B., Mayer, M.A., et al: ‘Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns’, Biomed. Opt. Express, 2012, 3, (6), pp. 11821199.
        . Biomed. Opt. Express , 6 , 1182 - 1199
    10. 10)
      • D. Robinson .
        10. Robinson, D.: ‘The mechanics of human saccadic eye movement’, J. Physiol., 1964, 174, (2), pp. 245264.
        . J. Physiol. , 2 , 245 - 264
    11. 11)
      • B. Potsaid , I. Gorczynska , V.J. Srinivasan .
        11. Potsaid, B., Gorczynska, I., Srinivasan, V.J., et al: ‘Ultrahigh speed spectral/Fourier domain oct ophthalmic imaging at 70,000 to 312,500 axial scans per second’, Opt. Express, 2008, 16, (19), pp. 1514915169.
        . Opt. Express , 19 , 15149 - 15169
    12. 12)
      • R.D. Ferguson , D.X. Hammer , L.A. Paunescu .
        12. Ferguson, R.D., Hammer, D.X., Paunescu, L.A., et al: ‘Tracking optical coherence tomography’, Opt. Lett., 2004, 29, (18), pp. 21392141.
        . Opt. Lett. , 18 , 2139 - 2141
    13. 13)
      • D.X. Hammer , R.D. Ferguson , J.C. Magill .
        13. Hammer, D.X., Ferguson, R.D., Magill, J.C., et al: ‘Active retinal tracker for clinical optical coherence tomography systems’, J. Biomed. Opt., 2005, 10, (2), pp. 0240380002403811.
        . J. Biomed. Opt. , 2 , 02403800 - 02403811
    14. 14)
      • Y. Zhang , C. Yu , D.L. David .
        14. Zhang, Y., Yu, C., David, D.L.: ‘Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images’, Opt. Express, 2016, 24, (13), pp. 1389413905.
        . Opt. Express , 13 , 13894 - 13905
    15. 15)
      • A. Levin , R. Fergus , F. Durand .
        15. Levin, A., Fergus, R., Durand, F., et al: ‘Deconvolution using natural image priors’, ACM Trans. Graph., 2007, 26, pp. 02.
        . ACM Trans. Graph. , 0 - 2
    16. 16)
      • P. Ruiz , X. Zhou , J. Mateos .
        16. Ruiz, P., Zhou, X., Mateos, J., et al: ‘Variational Bayesian blind image deconvolution: a review’, Digit. Signal Process., 2015, 47, pp. 116127.
        . Digit. Signal Process. , 116 - 127
    17. 17)
      • N. Wiener . (1949)
        17. Wiener, N.: ‘Smoothing of stationary time series’, Eng. Appl., (Wiley, New York, 1949).
        .
    18. 18)
      • W.H. Richardson .
        18. Richardson, W.H.: ‘Bayesian-based iterative method of image restoration’, J. Opt. Soc. Am., 1972, 62, (1), pp. 5559.
        . J. Opt. Soc. Am. , 1 , 55 - 59
    19. 19)
      • R. Fergus , T. William .
        19. Fergus, R., William, T.: ‘Removing camera shake from a single photograph’. Proc. of ACM Transactions on Graphics, Boston, MA, USA, 2006, pp. 787794.
        . Proc. of ACM Transactions on Graphics , 787 - 794
    20. 20)
      • J. Lee , Y. Ho .
        20. Lee, J., Ho, Y.: ‘High-quality non-blind image deconvolution with adaptive regularization’, J. Vis. Commun. Image Represent., 2011, 22, (7), pp. 653663.
        . J. Vis. Commun. Image Represent. , 7 , 653 - 663
    21. 21)
      • S. Cho , J. Wang , S. Lee .
        21. Cho, S., Wang, J., Lee, S.: ‘Handling outliers in non-blind image deconvolution’. IEEE Proc. of the Int. Conf. on Computer Vision, Barcelona, Spain, 2011, pp. 495502.
        . IEEE Proc. of the Int. Conf. on Computer Vision , 495 - 502
    22. 22)
      • D. Kundur , D. Hatzinakos .
        22. Kundur, D., Hatzinakos, D.: ‘Blind image deconvolution’, IEEE Signal Process. Mag., 1996, 13, (3), pp. 4364.
        . IEEE Signal Process. Mag. , 3 , 43 - 64
    23. 23)
      • A. Ahmed , B. Recht , J. Romberg .
        23. Ahmed, A., Recht, B., Romberg, J.: ‘Blind deconvolution using convex programming’, IEEE Trans. Inf. Theory, 2014, 60, (3), pp. 17111732.
        . IEEE Trans. Inf. Theory , 3 , 1711 - 1732
    24. 24)
      • D. Perrone .
        24. Perrone, D.: ‘Total variation blind deconvolution: the devil is in the details’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2014, pp. 29092916.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2909 - 2916
    25. 25)
      • C. Schuler , C.B. Harold , H. Stefan .
        25. Schuler, C., Harold, C.B., Stefan, H.: ‘A machine learning approach for non-blind image deconvolution’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 10671074.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 1067 - 1074
    26. 26)
      • T. Kenig , Z. Kam , A. Feuer .
        26. Kenig, T., Kam, Z., Feuer, A.: ‘Blind image deconvolution using machine learning for three-dimensional microscopy’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21912204.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 2191 - 2204
    27. 27)
      • T.S. Ralston , D.L. Marks , F. Kamalabadi .
        27. Ralston, T.S., Marks, D.L., Kamalabadi, F., et al: ‘Gaussian beam deconvolution in optical coherence tomography’. Proc. of SPIE, San Diego, CA, USA, 2005, pp. 112.
        . Proc. of SPIE , 1 - 12
    28. 28)
      • K. Wang , Z. Ding , M. Chen .
        28. Wang, K., Ding, Z., Chen, M., et al: ‘Deconvolution with fall-off compensated axial point spread function in spectral domain optical coherence tomography’, Opt. Commun., 2011, 284, (12), pp. 31733180.
        . Opt. Commun. , 12 , 3173 - 3180
    29. 29)
      • S. Hojjatoleslami , M. Avanaki , A.G. Podoleanu .
        29. Hojjatoleslami, S., Avanaki, M., Podoleanu, A.G.: ‘Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm’, Appl. Opt., 2013, 52, (23), pp. 56635670.
        . Appl. Opt. , 23 , 5663 - 5670
    30. 30)
      • L. Xu , J.S.J. Ren , C. Liu .
        30. Xu, L., Ren, J.S.J., Liu, C., et al: ‘Deep convolutional neural network for image deconvolution’. Int. Conf. on Neural Information Processing Systems, Montreal, Canada, 2014, pp. 17901798.
        . Int. Conf. on Neural Information Processing Systems , 1790 - 1798
    31. 31)
      • P. Wieschollek , B. Schölkopf , H.P.A. Lensch .
        31. Wieschollek, P., Schölkopf, B., Lensch, H.P.A., et al: ‘End-to-end learning for image burst deblurring’. Asian Conf. on Computer Vision, 2016, pp. 3551.
        . Asian Conf. on Computer Vision , 35 - 51
    32. 32)
      • Y. LeCun , L. Bottou , Y. Bengio .
        32. LeCun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’. Proc. IEEE, 1998, 86, (11), pp. 22782324.
        . Proc. IEEE , 11 , 2278 - 2324
    33. 33)
      • G.E. Hinton , S. Osindero , Y.W. Teh .
        33. Hinton, G.E., Osindero, S., Teh, Y.W.: ‘A fast learning algorithm for deep belief nets’, Neural Comput., 2006, 18, (7), pp. 15271554.
        . Neural Comput. , 7 , 1527 - 1554
    34. 34)
      • Y. Bengio , P. Lamblin , D. Popovici .
        34. Bengio, Y., Lamblin, P., Popovici, D., et al: ‘Greedy layer-wise training of deep networks’, Adv. Neural Inf. Process. Syst., 2007, 19, pp. 153160.
        . Adv. Neural Inf. Process. Syst. , 153 - 160
    35. 35)
      • G. Dahl , A.R. Mohamed , G.E. Hinton .
        35. Dahl, G., Mohamed, A.R., Hinton, G.E.: ‘Phone recognition with the mean-covariance restricted Boltzmann machine’. Proc. of Advances in Neural Information Processing Systems, Vancouver, Canada, 2010, pp. 469477.
        . Proc. of Advances in Neural Information Processing Systems , 469 - 477
    36. 36)
      • G.E. Dahl , D. Yu , L. Deng .
        36. Dahl, G.E., Yu, D., Deng, L., et al: ‘Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition’, IEEE Trans. Audio, Speech, Lang. Process., 2012, 20, (1), pp. 3042.
        . IEEE Trans. Audio, Speech, Lang. Process. , 1 , 30 - 42
    37. 37)
      • L. Deng , M.L. Seltzer , D. Yu .
        37. Deng, L., Seltzer, M.L., Yu, D., et al: ‘Binary coding of speech spectrograms using a deep auto-encoder’. Proc. of Interspeech, Makuhari, Japan, 2010, pp. 16921695.
        . Proc. of Interspeech , 1692 - 1695
    38. 38)
      • W. Chan , N. Jaitly , Q. Le .
        38. Chan, W., Jaitly, N., Le, Q.: ‘Listen, attend and spell: A neural network for large vocabulary conversational speech recognition’. Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Shanghai, China, 2016, pp. 49604964.
        . Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing , 4960 - 4964
    39. 39)
      • N. Boulanger-Lewandowski , Y. Bengio , P. Vincent .
        39. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: ‘Modeling temporal dependencies in high-dimensional sequences: application to polyphonic music generation and transcription’, Chem. A, Eur. J., 2012, 18, (13), pp. 39813991.
        . Chem. A, Eur. J. , 13 , 3981 - 3991
    40. 40)
      • R. Collobert , J. Weston , L. Bottou .
        40. Collobert, R., Weston, J., Bottou, L., et al: ‘Natural language processing (almost) from scratch’, J. Mach. Learn. Res., 2011, 12, (1), pp. 24932537.
        . J. Mach. Learn. Res. , 1 , 2493 - 2537
    41. 41)
      • J. Weston , S. Bengio , N. Usunier .
        41. Weston, J., Bengio, S., Usunier, N.: ‘Large scale image annotation: learning to rank with joint word-image embeddings’, Mach. Learn., 2010, 81, (1), pp. 2135.
        . Mach. Learn. , 1 , 21 - 35
    42. 42)
      • K. Simonyan , A. Zisserman .
        42. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, 2014, arXiv preprint arXiv:1409.1556.
        .
    43. 43)
      • Y. Jia , E. Shelhamer , J. Donahue .
        43. Jia, Y., Shelhamer, E., Donahue, J., et al: ‘Caffe: convolutional architecture for fast feature embedding’. Proc. of the 22nd ACM Int. Conf. on Multimedia, Orlando, FL, USA, 2014, pp. 675678.
        . Proc. of the 22nd ACM Int. Conf. on Multimedia , 675 - 678
    44. 44)
      • P. Molchanov .
        44. Molchanov, P.: ‘Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural network’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 42074215.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 4207 - 4215
    45. 45)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Proc. of Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 10971105.
        . Proc. of Advances in Neural Information Processing Systems , 1097 - 1105
    46. 46)
      • R. Socher , B. Huval , B. Bath .
        46. Socher, R., Huval, B., Bath, B., et al: ‘Convolutional-recursive deep learning for 3d object classification’. Proc. of Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 2012, pp. 665673.
        . Proc. of Advances in Neural Information Processing Systems , 665 - 673
    47. 47)
      • K. Simonyan , A. Vedaldi , A. Zisserman .
        47. Simonyan, K., Vedaldi, A., Zisserman, A.: ‘Deep inside convolutional networks: visualising image classification models and saliency maps’, 2013, arXiv preprint arXiv:1312.6034.
        .
    48. 48)
      • A. Karpathy , G. Toderici , S. Shetty .
        48. Karpathy, A., Toderici, G., Shetty, S., et al: ‘Large-scale video classification with convolutional neural networks’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 17251732.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 1725 - 1732
    49. 49)
      • S.C. Turaga , J.F. Murray , V. Jain .
        49. Turaga, S.C., Murray, J.F., Jain, V., et al: ‘Convolutional networks can learn to generate affinity graphs for image segmentation’, Neural Comput., 2010, 22, (2), pp. 511538.
        . Neural Comput. , 2 , 511 - 538
    50. 50)
      • A. Prasoon , K. Petersen , C. Igel .
        50. Prasoon, A., Petersen, K., Igel, C., et al: ‘Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network’. Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2013, pp. 246253.
        . Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention , 246 - 253
    51. 51)
      • J. Long , E. Shelhamer , T. Darrell .
        51. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 34313440.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 3431 - 3440
    52. 52)
      • V. Jain , S. Seung .
        52. Jain, V., Seung, S.: ‘Natural image denoising with convolutional networks’. Proc. of Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada, 2009, pp. 769776.
        . Proc. of Advances in Neural Information Processing Systems (NIPS) , 769 - 776
    53. 53)
      • D. Boscaini .
        53. Boscaini, D.: ‘Learning shape correspondence with anisotropic convolutional neural networks’. arXiv preprint, 2016, arXiv 1605.06437.
        .
    54. 54)
      • A.E. Savakis , H.J. Trussell .
        54. Savakis, A.E., Trussell, H.J.: ‘On the accuracy of PSF representation in image restoration’, IEEE Trans. Image Process., 1993, 2, (2), pp. 252259.
        . IEEE Trans. Image Process. , 2 , 252 - 259
    55. 55)
      • P. Zhang , H. Liu , Y. Ding .
        55. Zhang, P., Liu, H., Ding, Y.: ‘Dynamic bee colony algorithm based on multi-species co-evolution’, Appl. Intell., 2014, 40, (3), pp. 427440.
        . Appl. Intell. , 3 , 427 - 440
    56. 56)
      • S. Steenken , G. Behrens , D. Schulte-Frohlinde .
        56. Steenken, S., Behrens, G., Schulte-Frohlinde, D.: ‘Heterogeneous computing and grid scheduling with parallel biologically inspired hybrid heuristics’, Trans. Inst. Meas. Control, 2014, 36, (6), pp. 805814.
        . Trans. Inst. Meas. Control , 6 , 805 - 814
    57. 57)
      • J. Wang , B. Gong , H. Liu .
        57. Wang, J., Gong, B., Liu, H., et al: ‘Multidisciplinary approaches to artificial swarm intelligence for heterogeneous computing and cloud scheduling’, Appl. Intell., 2015, 43, (3), pp. 662675.
        . Appl. Intell. , 3 , 662 - 675
    58. 58)
      • J. Lian , Y. Zheng , W. Jiao .
        58. Lian, J., Zheng, Y., Jiao, W., et al: ‘Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information’, Med. Biol. Eng. Comput., 2017, 6, pp. 17.
        . Med. Biol. Eng. Comput. , 1 - 7
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2018.0016
Loading

Related content

content/journals/10.1049/iet-cvi.2018.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address