access icon free Contour detection model based on neuron behaviour in primary visual cortex

In the mammalian primary visual cortex, the response of the classical receptive field (CRF) to visual stimuli can be suppressed by inhibition of non-CRF (nCRF) neurons. Although many biologically plausible models based on these centre–surround interaction properties have been proposed, most of these models have failed to account for two important behaviours of neurons in the primary visual cortex (V1). First, saturation properties of neuron response. Second, the properties of fixational eye movements (FEyeMs). In the present study, the authors proposed a biologically motivated counter detection approach based on these properties. The authors’ work is significant in that they utilised a simple threshold method to ensure that CRF responses were observed within a meaningful range, and multichannel filter bank was proposed to simulate the influence of FEyeMs on nCRF. Both methods effectively preserved object contours and inhibition isolated textures. Extensive experiments indicated that the authors’ model can preserve more object contours and suppress more textures than previous biologically based models.

Inspec keywords: eye; medical image processing; image texture; biomechanics; image filtering; neurophysiology; visual evoked potentials; edge detection

Other keywords: threshold method; nonCRF neuron inhibition; multichannel filter bank; FEyeMs; object contour preservation; contour detection model; CRF; neuron response; saturation properties; isolated texture inhibition; visual stimuli; mammalian primary visual cortex; classical receptive field; fixational eye movements; neuron behaviour

Subjects: Patient diagnostic methods and instrumentation; Physiology of the eye; nerve structure and function; Computer vision and image processing techniques; Electrical activity in neurophysiological processes; Image recognition; Bioelectric signals; Biomedical measurement and imaging; Biology and medical computing; Medical and biomedical uses of fields, radiations, and radioactivity; health physics; Physics of body movements

References

    1. 1)
      • 24. Tang, Q., Sang, N., Zhang, T.: ‘Extraction of salient contours from cluttered scenes’, Pattern Recognit., 2007, 40, (11), pp. 31003109.
    2. 2)
      • 52. Rolfs, M.: ‘Microsaccades: small steps on a long way’, Vis. Res., 2009, 49, (20), pp. 24152441.
    3. 3)
      • 53. Greschner, M., Bongard, M., Rujan, P., et al: ‘Retinal ganglion cell synchronization by fixational eye movements improves feature estimation’, Nat. Neurosci., 2002, 5, (4), pp. 341347.
    4. 4)
      • 35. Gao, S.-B., Yang, K.-F., Li, C.-Y., et al: ‘Color constancy using double-opponency’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (10), pp. 19731985.
    5. 5)
      • 33. Yang, K., Gao, S., Li, C., et al: ‘Efficient color boundary detection with color-opponent mechanisms’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013.
    6. 6)
      • 23. Petkov, N., Westenberg, M.A.: ‘Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition’, Biol. Cybern., 2003, 88, (3), pp. 236246.
    7. 7)
      • 66. Martin, D., Fowlkes, C., Tal, D., et al: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Computer Vision, 2001. ICCV 2001. Proc. Eighth IEEE Int. Conf. on, IEEE, Vancouver, Canada, 2001.
    8. 8)
      • 16. Dragoi, V., Sur, M.: ‘Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects’, J. Neurophysiol., 2000, 83, (2), pp. 10191030.
    9. 9)
      • 54. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: ‘The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex’, Proc. Natl Acad. Sci. USA, 2002, 99, (21), pp. 1392013925.
    10. 10)
      • 45. Hamm, J.P., Dyckman, K.A., Ethridge, L.E., et al: ‘Preparatory activations across a distributed cortical network determine production of express saccades in humans’, J. Neurosci., 2010, 30, (21), pp. 73507357.
    11. 11)
      • 19. Ross, W.D., Grossberg, S., Mingolla, E.: ‘Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps’, Neural Netw., 2000, 13, (6), pp. 571588.
    12. 12)
      • 11. Polat, U., Mizobe, K., Pettet, M.W., et al: ‘Collinear stimuli regulate visual responses depending on cell's contrast threshold’, Nature, 1998, 391, (6667), pp. 580584.
    13. 13)
      • 28. Zeng, C., Li, Y., Li, C.: ‘Center–surround interaction with adaptive inhibition: a computational model for contour detection’, NeuroImage, 2011, 55, (1), pp. 4966.
    14. 14)
      • 14. Somers, D.C., Nelson, S.B., Sur, M.: ‘An emergent model of orientation selectivity in cat visual cortical simple cells’, J. Neurosci., 1995, 15, (8), pp. 54485465.
    15. 15)
      • 42. Pereda, A.E.: ‘Electrical synapses and their functional interactions with chemical synapses’, Nat. Rev. Neurosci., 2014, 15, (4), pp. 250263.
    16. 16)
      • 67. Spratling, M.W.: ‘Image segmentation using a sparse coding model of cortical area V1’, IEEE Trans. Image Process., 2013, 22, (4), pp. 16311643.
    17. 17)
      • 10. Kapadia, M.K., Ito, M., Gilbert, C.D., et al: ‘Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys’, Neuron, 1995, 15, (4), pp. 843856.
    18. 18)
      • 44. Bosman, C.A., Womelsdorf, T., Desimone, R., et al: ‘A microsaccadic rhythm modulates gamma-band synchronization and behavior’, J. Neurosci., 2009, 29, (30), pp. 94719480.
    19. 19)
      • 34. Gao, S., Yang, K., Li, C., et al: ‘A color constancy model with double-opponency mechanisms’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013.
    20. 20)
      • 65. Lin, C., Xu, G., Cao, Y., et al: ‘Improved contour detection model with spatial summation properties based on nonclassical receptive field’, J. Electron. Imaging, 2016, 25, (4), pp. 043018043018.
    21. 21)
      • 3. Enroth-Cugell, C., Jakiela, H.: ‘Suppression of cat retinal ganglion cell responses by moving patterns’, J. Physiol., 1980, 302, p. 49.
    22. 22)
      • 20. Ursino, M., La Cara, G.E.: ‘A model of contextual interactions and contour detection in primary visual cortex’, Neural Netw., 2004, 17, (5), pp. 719735.
    23. 23)
      • 4. Werblin, F.S.: ‘Lateral interactions at inner plexiform layer of vertebrate retina: antagonistic responses to change’, Science, 1972, 175, (4025), pp. 10081010.
    24. 24)
      • 1. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields of single neurones in the cat's striate cortex’, J. Physiol., 1959, 148, (3), pp. 574591.
    25. 25)
      • 40. Jones, J.P., Palmer, L.A.: ‘An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex’, J. Neurophysiol., 1987, 58, (6), pp. 12331258.
    26. 26)
      • 7. Chao-Yi, L., Wu, L.: ‘Extensive integration field beyond the classical receptive field of cat's striate cortical neurons –classification and tuning properties’, Vis. Res., 1994, 34, (18), pp. 23372355.
    27. 27)
      • 36. Yang, K.-F., Gao, S.-B., Guo, C.-F., et al: ‘Boundary detection using double-opponency and spatial sparseness constraint’, IEEE Trans. Image Process., 2015, 24, (8), pp. 25652578.
    28. 28)
      • 13. Levitt, J.B., Lund, J.S.: ‘Contrast dependence of contextual effects in primate visual cortex’, Nature, 1997, 387, (6628), pp. 7376.
    29. 29)
      • 57. Leopold, D.A., Logothetis, N.K.: ‘Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex’, Exp. Brain Res., 1998, 123, (3), pp. 341345.
    30. 30)
      • 15. Das, A., Gilbert, C.D.: ‘Topography of contextual modulations mediated by short-range interactions in primary visual cortex’, Nature, 1999, 399, (6737), pp. 655661.
    31. 31)
      • 41. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al: ‘Principles of neural science’ (McGraw-Hill, New York, 2000).
    32. 32)
      • 56. Bair, W., O'keefe, L.P.: ‘The influence of fixational eye movements on the response of neurons in area Mt of the macaque’, Vis. Neurosci., 1998, 15, (04), pp. 779786.
    33. 33)
      • 32. Yang, K.-F., Li, C.-Y., Li, Y.-J.: ‘Potential roles of the interaction between model V1 neurons with orientation-selective and non-selective surround inhibition in contour detection’, Front. Neural Circuits, 2015, 9, pp. 30.
    34. 34)
      • 64. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Analysis Machine Intell., 1986, 8, (6), pp. 679698.
    35. 35)
      • 9. Walker, G.A., Ohzawa, I., Freeman, R.D.: ‘Suppression outside the classical cortical receptive field’, Vis. Neurosci., 2000, 17, (03), pp. 369379.
    36. 36)
      • 26. Grigorescu, C., Petkov, N., Westenberg, M.A.: ‘Contour and boundary detection improved by surround suppression of texture edges’, Image Vis. Comput., 2004, 22, (8), pp. 609622.
    37. 37)
      • 25. Ernst, U., Van Nathalie, H., Schmitt, N., et al: ‘Predicting eye movements in a contour detection task’, BMC Neurosci., 2012, 13, (Suppl. 1), p. O4.
    38. 38)
      • 30. Yang, K., Li, Y.: ‘A coutour detection model based on surround inhibition with multiple cues’, Chinese Conference on Pattern Recognition (CCPR) 2012, Beijing, China, September 24–26 2012, pp. 145152.
    39. 39)
      • 48. Eriksen, C.W., Colegate, R.L.: ‘Selective attention and serial processing in briefly presented visual displays’, Percept. Psychophys., 1971, 10, (5), pp. 321326.
    40. 40)
      • 62. Cornsweet, T.N.: ‘Determination of the stimuli for involuntary drifts and saccadic eye movements’, JOSA, 1956, 46, (11), pp. 987993.
    41. 41)
      • 49. Gregoriou, G.G., Gotts, S.J., Zhou, H., et al: ‘High-frequency, long-range coupling between prefrontal and visual cortex during attention’, Science, 2009, 324, (5931), pp. 12071210.
    42. 42)
      • 27. Papari, G., Petkov, N.: ‘An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection’, Pattern Recognit., 2011, 44, (9), pp. 19992007.
    43. 43)
      • 39. Daugman, J.G.: ‘Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters’, JOSA A, 1985, 2, (7), pp. 11601169.
    44. 44)
      • 38. Gao, S., Han, W., Yang, K., et al: ‘Efficient color constancy with local surface reflectance statistics’. European Conf. on Computer Vision, Zurich, Switzerland, 2014.
    45. 45)
      • 6. Jones, H., Grieve, K., Wang, W., et al: ‘Surround suppression in primate V1’, J. Neurophysiol., 2001, 86, (4), pp. 20112028.
    46. 46)
      • 18. Xu, W.-F., Shen, Z.-M., Li, C.-Y.: ‘Spatial phase sensitivity of V1 neurons in alert monkey’, Cereb. Cortex, 2005, 15, (11), pp. 16971702.
    47. 47)
      • 21. Hansen, T., Neumann, H.: ‘A recurrent model of contour integration in primary visual cortex’, J. Vis., 2008, 8, (8), pp. 125.
    48. 48)
      • 37. Zhang, X.-S., Gao, S.-B., Li, R.-X., et al: ‘A retinal mechanism inspired color constancy model’, IEEE Trans. Image Process., 2016, 25, (3), pp. 12191232.
    49. 49)
      • 22. Grigorescu, C., Petkov, N., Westenberg, M.A.: ‘Contour detection based on nonclassical receptive field inhibition’, IEEE Trans. Image Process., 2003, 12, (7), pp. 729739.
    50. 50)
      • 63. Ditchburn, R.: ‘The function of small saccades’, Vis. Res., 1980, 20, (3), pp. 271272.
    51. 51)
      • 17. Bredfeldt, C.E., Ringach, D.: ‘Dynamics of spatial frequency tuning in macaque V1’, J. Neurosci., 2002, 22, (5), pp. 19761984.
    52. 52)
      • 60. Ratliff, F., Riggs, L.A.: ‘Involuntary motions of the eye during monocular fixation’, J. Exp. Psychol., 1950, 40, (6), p. 687.
    53. 53)
      • 31. Wei, H., Lang, B., Zuo, Q.: ‘Contour detection model with multi-scale integration based on non-classical receptive field’, Neurocomputing, 2013, 103, pp. 247262.
    54. 54)
      • 55. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: ‘Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys’, Nat. Neurosci., 2000, 3, (3), pp. 251258.
    55. 55)
      • 61. Ditchburn, R., Ginsborg, B.: ‘Involuntary eye movements during fixation’, J. Physiol., 1953, 119, (1), p. 1.
    56. 56)
      • 47. Wright, R.D., Ward, L.M.: ‘Orienting of attention’ (Oxford University Press, Oxford, 2008).
    57. 57)
      • 51. Carpenter, R.H.: ‘Movements of the eyes (2nd Rev)’ (Pion Limited, London, 1988).
    58. 58)
      • 29. Zeng, C., Li, Y., Yang, K., et al: ‘Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions’, Neurocomputing, 2011, 74, (10), pp. 15271534.
    59. 59)
      • 8. Li, C.-Y.: ‘Integration fields beyond the classical receptive field: organization and functional properties’, Physiology, 1996, 11, (4), pp. 181186.
    60. 60)
      • 58. Snodderly, D.M., Kagan, I., Gur, M.: ‘Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding’, Vis. Neurosci., 2001, 18, (2), pp. 259277.
    61. 61)
      • 43. Krauzlis, R.: ‘Eye movements’, in Squire, L.R., Berg, D. (Eds.): Fundam. Neurosci., (Academic Press, New York, 2008, 3rd edn.), pp. 775792.
    62. 62)
      • 2. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields, binocular interaction and functional architecture in the cat's visual cortex’, J. Physiol., 1962, 160, (1), pp. 106154.
    63. 63)
      • 46. Posner, M.I.: ‘Orienting of attention’, Q. J. Exp. Psychol., 1980, 32, (1), pp. 325.
    64. 64)
      • 5. Kapadia, M.K., Westheimer, G., Gilbert, C.D.: ‘Spatial distribution of contextual interactions in primary visual cortex and in visual perception’, J. Neurophysiol., 2000, 84, (4), pp. 20482062.
    65. 65)
      • 12. Knierim, J.J., Van Essen, D.C.: ‘Neuronal responses to static texture patterns in area V1 of the alert macaque monkey’, J. Neurophysiol., 1992, 67, (4), pp. 961980.
    66. 66)
      • 50. Yarbus, A.: ‘Eye Movements During Perception of Complex Objects’, in Yarbus, A. (Ed.): Eye Mov. Vis., (Springer, Boston, MA, USA, 1967), pp. 171211.
    67. 67)
      • 59. Riggs, L.A., Ratliff, F., Cornsweet, J.C., et al: ‘The disappearance of steadily fixated visual test objects’, JOSA, 1953, 43, (6), pp. 495501.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0661
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0661
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading