http://iet.metastore.ingenta.com
1887

Contour detection model based on neuron behaviour in primary visual cortex

Contour detection model based on neuron behaviour in primary visual cortex

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the mammalian primary visual cortex, the response of the classical receptive field (CRF) to visual stimuli can be suppressed by inhibition of non-CRF (nCRF) neurons. Although many biologically plausible models based on these centre–surround interaction properties have been proposed, most of these models have failed to account for two important behaviours of neurons in the primary visual cortex (V1). First, saturation properties of neuron response. Second, the properties of fixational eye movements (FEyeMs). In the present study, the authors proposed a biologically motivated counter detection approach based on these properties. The authors’ work is significant in that they utilised a simple threshold method to ensure that CRF responses were observed within a meaningful range, and multichannel filter bank was proposed to simulate the influence of FEyeMs on nCRF. Both methods effectively preserved object contours and inhibition isolated textures. Extensive experiments indicated that the authors’ model can preserve more object contours and suppress more textures than previous biologically based models.

References

    1. 1)
      • 1. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields of single neurones in the cat's striate cortex’, J. Physiol., 1959, 148, (3), pp. 574591.
    2. 2)
      • 2. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields, binocular interaction and functional architecture in the cat's visual cortex’, J. Physiol., 1962, 160, (1), pp. 106154.
    3. 3)
      • 3. Enroth-Cugell, C., Jakiela, H.: ‘Suppression of cat retinal ganglion cell responses by moving patterns’, J. Physiol., 1980, 302, p. 49.
    4. 4)
      • 4. Werblin, F.S.: ‘Lateral interactions at inner plexiform layer of vertebrate retina: antagonistic responses to change’, Science, 1972, 175, (4025), pp. 10081010.
    5. 5)
      • 5. Kapadia, M.K., Westheimer, G., Gilbert, C.D.: ‘Spatial distribution of contextual interactions in primary visual cortex and in visual perception’, J. Neurophysiol., 2000, 84, (4), pp. 20482062.
    6. 6)
      • 6. Jones, H., Grieve, K., Wang, W., et al: ‘Surround suppression in primate V1’, J. Neurophysiol., 2001, 86, (4), pp. 20112028.
    7. 7)
      • 7. Chao-Yi, L., Wu, L.: ‘Extensive integration field beyond the classical receptive field of cat's striate cortical neurons –classification and tuning properties’, Vis. Res., 1994, 34, (18), pp. 23372355.
    8. 8)
      • 8. Li, C.-Y.: ‘Integration fields beyond the classical receptive field: organization and functional properties’, Physiology, 1996, 11, (4), pp. 181186.
    9. 9)
      • 9. Walker, G.A., Ohzawa, I., Freeman, R.D.: ‘Suppression outside the classical cortical receptive field’, Vis. Neurosci., 2000, 17, (03), pp. 369379.
    10. 10)
      • 10. Kapadia, M.K., Ito, M., Gilbert, C.D., et al: ‘Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys’, Neuron, 1995, 15, (4), pp. 843856.
    11. 11)
      • 11. Polat, U., Mizobe, K., Pettet, M.W., et al: ‘Collinear stimuli regulate visual responses depending on cell's contrast threshold’, Nature, 1998, 391, (6667), pp. 580584.
    12. 12)
      • 12. Knierim, J.J., Van Essen, D.C.: ‘Neuronal responses to static texture patterns in area V1 of the alert macaque monkey’, J. Neurophysiol., 1992, 67, (4), pp. 961980.
    13. 13)
      • 13. Levitt, J.B., Lund, J.S.: ‘Contrast dependence of contextual effects in primate visual cortex’, Nature, 1997, 387, (6628), pp. 7376.
    14. 14)
      • 14. Somers, D.C., Nelson, S.B., Sur, M.: ‘An emergent model of orientation selectivity in cat visual cortical simple cells’, J. Neurosci., 1995, 15, (8), pp. 54485465.
    15. 15)
      • 15. Das, A., Gilbert, C.D.: ‘Topography of contextual modulations mediated by short-range interactions in primary visual cortex’, Nature, 1999, 399, (6737), pp. 655661.
    16. 16)
      • 16. Dragoi, V., Sur, M.: ‘Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects’, J. Neurophysiol., 2000, 83, (2), pp. 10191030.
    17. 17)
      • 17. Bredfeldt, C.E., Ringach, D.: ‘Dynamics of spatial frequency tuning in macaque V1’, J. Neurosci., 2002, 22, (5), pp. 19761984.
    18. 18)
      • 18. Xu, W.-F., Shen, Z.-M., Li, C.-Y.: ‘Spatial phase sensitivity of V1 neurons in alert monkey’, Cereb. Cortex, 2005, 15, (11), pp. 16971702.
    19. 19)
      • 19. Ross, W.D., Grossberg, S., Mingolla, E.: ‘Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps’, Neural Netw., 2000, 13, (6), pp. 571588.
    20. 20)
      • 20. Ursino, M., La Cara, G.E.: ‘A model of contextual interactions and contour detection in primary visual cortex’, Neural Netw., 2004, 17, (5), pp. 719735.
    21. 21)
      • 21. Hansen, T., Neumann, H.: ‘A recurrent model of contour integration in primary visual cortex’, J. Vis., 2008, 8, (8), pp. 125.
    22. 22)
      • 22. Grigorescu, C., Petkov, N., Westenberg, M.A.: ‘Contour detection based on nonclassical receptive field inhibition’, IEEE Trans. Image Process., 2003, 12, (7), pp. 729739.
    23. 23)
      • 23. Petkov, N., Westenberg, M.A.: ‘Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition’, Biol. Cybern., 2003, 88, (3), pp. 236246.
    24. 24)
      • 24. Tang, Q., Sang, N., Zhang, T.: ‘Extraction of salient contours from cluttered scenes’, Pattern Recognit., 2007, 40, (11), pp. 31003109.
    25. 25)
      • 25. Ernst, U., Van Nathalie, H., Schmitt, N., et al: ‘Predicting eye movements in a contour detection task’, BMC Neurosci., 2012, 13, (Suppl. 1), p. O4.
    26. 26)
      • 26. Grigorescu, C., Petkov, N., Westenberg, M.A.: ‘Contour and boundary detection improved by surround suppression of texture edges’, Image Vis. Comput., 2004, 22, (8), pp. 609622.
    27. 27)
      • 27. Papari, G., Petkov, N.: ‘An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection’, Pattern Recognit., 2011, 44, (9), pp. 19992007.
    28. 28)
      • 28. Zeng, C., Li, Y., Li, C.: ‘Center–surround interaction with adaptive inhibition: a computational model for contour detection’, NeuroImage, 2011, 55, (1), pp. 4966.
    29. 29)
      • 29. Zeng, C., Li, Y., Yang, K., et al: ‘Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions’, Neurocomputing, 2011, 74, (10), pp. 15271534.
    30. 30)
      • 30. Yang, K., Li, Y.: ‘A coutour detection model based on surround inhibition with multiple cues’, Chinese Conference on Pattern Recognition (CCPR) 2012, Beijing, China, September 24–26 2012, pp. 145152.
    31. 31)
      • 31. Wei, H., Lang, B., Zuo, Q.: ‘Contour detection model with multi-scale integration based on non-classical receptive field’, Neurocomputing, 2013, 103, pp. 247262.
    32. 32)
      • 32. Yang, K.-F., Li, C.-Y., Li, Y.-J.: ‘Potential roles of the interaction between model V1 neurons with orientation-selective and non-selective surround inhibition in contour detection’, Front. Neural Circuits, 2015, 9, pp. 30.
    33. 33)
      • 33. Yang, K., Gao, S., Li, C., et al: ‘Efficient color boundary detection with color-opponent mechanisms’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013.
    34. 34)
      • 34. Gao, S., Yang, K., Li, C., et al: ‘A color constancy model with double-opponency mechanisms’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013.
    35. 35)
      • 35. Gao, S.-B., Yang, K.-F., Li, C.-Y., et al: ‘Color constancy using double-opponency’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (10), pp. 19731985.
    36. 36)
      • 36. Yang, K.-F., Gao, S.-B., Guo, C.-F., et al: ‘Boundary detection using double-opponency and spatial sparseness constraint’, IEEE Trans. Image Process., 2015, 24, (8), pp. 25652578.
    37. 37)
      • 37. Zhang, X.-S., Gao, S.-B., Li, R.-X., et al: ‘A retinal mechanism inspired color constancy model’, IEEE Trans. Image Process., 2016, 25, (3), pp. 12191232.
    38. 38)
      • 38. Gao, S., Han, W., Yang, K., et al: ‘Efficient color constancy with local surface reflectance statistics’. European Conf. on Computer Vision, Zurich, Switzerland, 2014.
    39. 39)
      • 39. Daugman, J.G.: ‘Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters’, JOSA A, 1985, 2, (7), pp. 11601169.
    40. 40)
      • 40. Jones, J.P., Palmer, L.A.: ‘An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex’, J. Neurophysiol., 1987, 58, (6), pp. 12331258.
    41. 41)
      • 41. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al: ‘Principles of neural science’ (McGraw-Hill, New York, 2000).
    42. 42)
      • 42. Pereda, A.E.: ‘Electrical synapses and their functional interactions with chemical synapses’, Nat. Rev. Neurosci., 2014, 15, (4), pp. 250263.
    43. 43)
      • 43. Krauzlis, R.: ‘Eye movements’, in Squire, L.R., Berg, D. (Eds.): Fundam. Neurosci., (Academic Press, New York, 2008, 3rd edn.), pp. 775792.
    44. 44)
      • 44. Bosman, C.A., Womelsdorf, T., Desimone, R., et al: ‘A microsaccadic rhythm modulates gamma-band synchronization and behavior’, J. Neurosci., 2009, 29, (30), pp. 94719480.
    45. 45)
      • 45. Hamm, J.P., Dyckman, K.A., Ethridge, L.E., et al: ‘Preparatory activations across a distributed cortical network determine production of express saccades in humans’, J. Neurosci., 2010, 30, (21), pp. 73507357.
    46. 46)
      • 46. Posner, M.I.: ‘Orienting of attention’, Q. J. Exp. Psychol., 1980, 32, (1), pp. 325.
    47. 47)
      • 47. Wright, R.D., Ward, L.M.: ‘Orienting of attention’ (Oxford University Press, Oxford, 2008).
    48. 48)
      • 48. Eriksen, C.W., Colegate, R.L.: ‘Selective attention and serial processing in briefly presented visual displays’, Percept. Psychophys., 1971, 10, (5), pp. 321326.
    49. 49)
      • 49. Gregoriou, G.G., Gotts, S.J., Zhou, H., et al: ‘High-frequency, long-range coupling between prefrontal and visual cortex during attention’, Science, 2009, 324, (5931), pp. 12071210.
    50. 50)
      • 50. Yarbus, A.: ‘Eye Movements During Perception of Complex Objects’, in Yarbus, A. (Ed.): Eye Mov. Vis., (Springer, Boston, MA, USA, 1967), pp. 171211.
    51. 51)
      • 51. Carpenter, R.H.: ‘Movements of the eyes (2nd Rev)’ (Pion Limited, London, 1988).
    52. 52)
      • 52. Rolfs, M.: ‘Microsaccades: small steps on a long way’, Vis. Res., 2009, 49, (20), pp. 24152441.
    53. 53)
      • 53. Greschner, M., Bongard, M., Rujan, P., et al: ‘Retinal ganglion cell synchronization by fixational eye movements improves feature estimation’, Nat. Neurosci., 2002, 5, (4), pp. 341347.
    54. 54)
      • 54. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: ‘The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex’, Proc. Natl Acad. Sci. USA, 2002, 99, (21), pp. 1392013925.
    55. 55)
      • 55. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: ‘Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys’, Nat. Neurosci., 2000, 3, (3), pp. 251258.
    56. 56)
      • 56. Bair, W., O'keefe, L.P.: ‘The influence of fixational eye movements on the response of neurons in area Mt of the macaque’, Vis. Neurosci., 1998, 15, (04), pp. 779786.
    57. 57)
      • 57. Leopold, D.A., Logothetis, N.K.: ‘Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex’, Exp. Brain Res., 1998, 123, (3), pp. 341345.
    58. 58)
      • 58. Snodderly, D.M., Kagan, I., Gur, M.: ‘Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding’, Vis. Neurosci., 2001, 18, (2), pp. 259277.
    59. 59)
      • 59. Riggs, L.A., Ratliff, F., Cornsweet, J.C., et al: ‘The disappearance of steadily fixated visual test objects’, JOSA, 1953, 43, (6), pp. 495501.
    60. 60)
      • 60. Ratliff, F., Riggs, L.A.: ‘Involuntary motions of the eye during monocular fixation’, J. Exp. Psychol., 1950, 40, (6), p. 687.
    61. 61)
      • 61. Ditchburn, R., Ginsborg, B.: ‘Involuntary eye movements during fixation’, J. Physiol., 1953, 119, (1), p. 1.
    62. 62)
      • 62. Cornsweet, T.N.: ‘Determination of the stimuli for involuntary drifts and saccadic eye movements’, JOSA, 1956, 46, (11), pp. 987993.
    63. 63)
      • 63. Ditchburn, R.: ‘The function of small saccades’, Vis. Res., 1980, 20, (3), pp. 271272.
    64. 64)
      • 64. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Analysis Machine Intell., 1986, 8, (6), pp. 679698.
    65. 65)
      • 65. Lin, C., Xu, G., Cao, Y., et al: ‘Improved contour detection model with spatial summation properties based on nonclassical receptive field’, J. Electron. Imaging, 2016, 25, (4), pp. 043018043018.
    66. 66)
      • 66. Martin, D., Fowlkes, C., Tal, D., et al: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Computer Vision, 2001. ICCV 2001. Proc. Eighth IEEE Int. Conf. on, IEEE, Vancouver, Canada, 2001.
    67. 67)
      • 67. Spratling, M.W.: ‘Image segmentation using a sparse coding model of cortical area V1’, IEEE Trans. Image Process., 2013, 22, (4), pp. 16311643.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0661
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0661
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address