http://iet.metastore.ingenta.com
1887

Combining RtL and LtR HMMs to recognise handwritten Farsi words of small- and medium-sized vocabularies

Combining RtL and LtR HMMs to recognise handwritten Farsi words of small- and medium-sized vocabularies

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a method for holistic recognition of handwritten Farsi words is proposed, which fuses the outputs of right-to-left (RtL) and left-to-right (LtR) hidden Markov models (HMMs). The experimental results on 16,000 images of 200 names of Iranian cities, from the ‘Iranshahr 3’ are presented and compared with those methods using only RtL or LtR models. Experimental results show that the main sources of error are similar beginnings or similar endings of the words. Since RtL and LtR models when dealing with the words behave differently, there is notable error diversity between the two classifiers in such a way that their combination increases the recognition rate. Compared to the RtL-HMM, the product of output scores of the RtL and LtR-HMMs reduces the classification error to about 6, 6 and 3%, for three different feature sets. A subjective error analysis on the results is also provided.

References

    1. 1)
      • S. Vajda , K. Roy , U. Pal .
        1. Vajda, S., Roy, K., Pal, U., et al: ‘Automation of Indian postal documents written in Bangla and English’, Int. J. Pattern Recognit. Artif. Intell., 2009, 23, (8), pp. 15991632.
        . Int. J. Pattern Recognit. Artif. Intell. , 8 , 1599 - 1632
    2. 2)
      • U. Pal , A. Belaïd , C. Choisy .
        2. Pal, U., Belaïd, A., Choisy, C.: ‘Touching numeral segmentation using water reservoir concept’, Pattern Recognit. Lett., 2003, 24, (1–3), pp. 261272.
        . Pattern Recognit. Lett. , 261 - 272
    3. 3)
      • M. Ye , P.A. Viola , S. Raghupathy .
        3. Ye, M., Viola, P.A., Raghupathy, S., et al: ‘Learning to group text lines and regions in free form handwritten notes’. Ninth Int. Conf. Document Analysis and Recognition, Curitiba, 2007, vol. 1, pp. 2832.
        . Ninth Int. Conf. Document Analysis and Recognition , 28 - 32
    4. 4)
      • V. Govindaraju , H. Xue .
        4. Govindaraju, V., Xue, H.: ‘Fast handwriting recognition for indexing historical documents’. Proc. First Int. Workshop Document Image Analysis for Libraries, Palo Alto, 2004, pp. 314320.
        . Proc. First Int. Workshop Document Image Analysis for Libraries , 314 - 320
    5. 5)
      • T. Steinherz , E. Rivlin , N. Intrator .
        5. Steinherz, T., Rivlin, E., Intrator, N.: ‘Off-line cursive script word recognition: a survey’, Int. J. Doc. Anal. Recognit., 1999, 2, (2), pp. 90110.
        . Int. J. Doc. Anal. Recognit. , 2 , 90 - 110
    6. 6)
      • Y. Lu , M. Shridhar .
        6. Lu, Y., Shridhar, M.: ‘Character segmentation in handwritten words – an overview’, Pattern Recognit., 1996, 29, (1), pp. 7796.
        . Pattern Recognit. , 1 , 77 - 96
    7. 7)
      • S. Madhvanath , V. Govindaraju .
        7. Madhvanath, S., Govindaraju, V.: ‘The role of holistic paradigms in handwritten word recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 149164.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 149 - 164
    8. 8)
      • C. Choisy , A. Belaïd .
        8. Choisy, C., Belaïd, A.: ‘Cross-learning in analytic word recognition without segmentation’, Int. J. Doc. Anal. Recognit., 2002, 4, (4), pp. 281289.
        . Int. J. Doc. Anal. Recognit. , 4 , 281 - 289
    9. 9)
      • K. Masroori , E. Kabir .
        9. Masroori, K., Kabir, E.: ‘Handwritten Farsi word recognition using DTW algorithm’, Daneshvar J., 1999, 25, pp. 5968, in Farsi.
        . Daneshvar J. , 59 - 68
    10. 10)
      • S.A.A.A. Arani , E. Kabir .
        10. Arani, S.A.A.A., Kabir, E.: ‘Neural networks combination based on negative correlation learning for handwritten Farsi word recognition’. 12th Conf. Intelligent Systems, Bam, Kerman, Iran, 2014, in Farsi.
        . 12th Conf. Intelligent Systems
    11. 11)
      • E. Bayesteh , A. Ahmadifard , H. Khosravi .
        11. Bayesteh, E., Ahmadifard, A., Khosravi, H.: ‘A lexicon reduction method based on clustering word images in offline Farsi handwritten word recognition systems’. Seventh Iranian Conf. Machine Vision and Image Processing (MVIP), Tehran, Iran, 2011.
        . Seventh Iranian Conf. Machine Vision and Image Processing (MVIP)
    12. 12)
      • S. Mozaffari , K. Faez , V. Märgner .
        12. Mozaffari, S., Faez, K., Märgner, V., et al: ‘Lexicon reduction using dots for off-line Farsi/Arabic handwritten word recognition’, Pattern Recognit. Lett., 2008, 29, (6), pp. 724734.
        . Pattern Recognit. Lett. , 6 , 724 - 734
    13. 13)
      • H. Davoudi , M. Cheriet , E. Kabir .
        13. Davoudi, H., Cheriet, M., Kabir, E.: ‘Lexicon reduction of handwritten Arabic subwords based on the prominent shape regions’, Int. J. Doc. Anal. Recognit., 2016, 19, (2), pp. 139153.
        . Int. J. Doc. Anal. Recognit. , 2 , 139 - 153
    14. 14)
      • V. Frinken , S. Uchida .
        14. Frinken, V., Uchida, S.: ‘Deep BLSTM neural networks for unconstrained continuous handwritten text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 911915.
        . 13th Int. Conf. Document Analysis and Recognition , 911 - 915
    15. 15)
      • U.V. Marti , H. Bunke .
        15. Marti, U.V., Bunke, H.: ‘The IAM-database: an English sentence database for offline handwriting recognition’, Int. J. Doc. Anal. Recognit., 2002, 5, (1), pp. 3946.
        . Int. J. Doc. Anal. Recognit. , 1 , 39 - 46
    16. 16)
      • A. Graves , M. Liwicki , S. Fernández .
        16. Graves, A., Liwicki, M., Fernández, S., et al: ‘A novel connectionist system for unconstrained handwriting recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (5), pp. 855868.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 855 - 868
    17. 17)
      • D.S. Maitra , U. Bhattacharya , S.K. Parui .
        17. Maitra, D.S., Bhattacharya, U., Parui, S.K.: ‘CNN based common approach to handwritten character recognition of multiple scripts’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 10211025.
        . 13th Int. Conf. Document Analysis and Recognition , 1021 - 1025
    18. 18)
      • I. Kim , X. Xie .
        18. Kim, I., Xie, X.: ‘Handwritten Hangul recognition using deep convolutional neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (1), pp. 113.
        . Int. J. Doc. Anal. Recognit. , 1 , 1 - 13
    19. 19)
      • W. Yang , L. Jin , Z. Xie .
        19. Yang, W., Jin, L., Xie, Z., et al: ‘Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 551555.
        . 13th Int. Conf. Document Analysis and Recognition , 551 - 555
    20. 20)
      • M. Dehghan , K. Faez , M. Ahmadi .
        20. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Handwritten Farsi (Arabic) word recognition: a holistic approach using discrete HMM’, Pattern Recognit., 2001, 34, (5), pp. 10571065.
        . Pattern Recognit. , 5 , 1057 - 1065
    21. 21)
      • M. Dehghan , K. Faez , M. Ahmadi .
        21. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models’, Pattern Recognit. Lett., 2001, 22, (2), pp. 209214.
        . Pattern Recognit. Lett. , 2 , 209 - 214
    22. 22)
      • M.S. Khorsheed .
        22. Khorsheed, M.S.: ‘Recognizing handwritten Arabic manuscripts using a single hidden Markov model’, Pattern Recognit. Lett., 2003, 24, (14), pp. 22352242.
        . Pattern Recognit. Lett. , 14 , 2235 - 2242
    23. 23)
      • A. Graves , J. Schmidhuber .
        23. Graves, A., Schmidhuber, J.: ‘Offline handwriting recognition with multidimensional recurrent neural networks’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2008, vol. 21.
        . Advances in Neural Information Processing Systems
    24. 24)
      • Y. Chherawala , P.P. Roy , M. Cheriet .
        24. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Combination of context-dependent bidirectional long short-term memory classifiers for robust offline handwriting recognition’, Pattern Recognit. Lett., 2017, 90, pp. 5864.
        . Pattern Recognit. Lett. , 58 - 64
    25. 25)
      • Y. Chherawala , P.P. Roy , M. Cheriet .
        25. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Feature set evaluation for offline handwriting recognition systems: application to the recurrent neural network model’, IEEE Trans. Cybern., 2016, 46, (12), pp. 28252836.
        . IEEE Trans. Cybern. , 12 , 2825 - 2836
    26. 26)
      • G.A. Abandah , A. Graves , B. Al-Shagoor .
        26. Abandah, G.A., Graves, A., Al-Shagoor, B., et al: ‘Automatic diacritization of Arabic text using recurrent neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (2), pp. 183197.
        . Int. J. Doc. Anal. Recognit. , 2 , 183 - 197
    27. 27)
      • X. Liu , B. Tang , Z. Wang .
        27. Liu, X., Tang, B., Wang, Z., et al: ‘Chart classification by combining deep convolutional networks and deep belief networks’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 801805.
        . 13th Int. Conf. Document Analysis and Recognition , 801 - 805
    28. 28)
      • A.W. Harley , A. Ufkes , K.G. Derpanis .
        28. Harley, A.W., Ufkes, A., Derpanis, K.G.: ‘Evaluation of deep convolutional nets for document image classification and retrieval’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 991995.
        . 13th Int. Conf. Document Analysis and Recognition , 991 - 995
    29. 29)
      • Y. Zheng , Y. Cai , G. Zhong .
        29. Zheng, Y., Cai, Y., Zhong, G., et al: ‘Stretching deep architectures for text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 236240.
        . 13th Int. Conf. Document Analysis and Recognition , 236 - 240
    30. 30)
      • S.A.A.A. Arani , E. Kabir , R. Ebrahimpour .
        30. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Farsi handwritten word recognition using image gradient and hidden Markov model’. Ninth Conf. Machine Vision and Image Processing, Tehran, Iran, 2015, in Farsi.
        . Ninth Conf. Machine Vision and Image Processing
    31. 31)
      • B. Zacher , M. Lidschreiber , P. Cramer .
        31. Zacher, B., Lidschreiber, M., Cramer, P., et al: ‘Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle’, Mol. Syst. Biol., 2014, 10, (12), p. 768.
        . Mol. Syst. Biol. , 12 , 768
    32. 32)
      • N. Ejlali , H. Pezeshk .
        32. Ejlali, N., Pezeshk, H.: ‘A bidirectional hidden Markov model in linear memory’, J. Stat. Sci., 2009, 2, (2), pp. 131148.
        . J. Stat. Sci. , 2 , 131 - 148
    33. 33)
      • A. Kadim , A. Lazrek .
        33. Kadim, A., Lazrek, A.: ‘Bidirectional HMM-based Arabic POS tagging’, Int. J. Speech Technol., 2016, 19, (2), pp. 303312.
        . Int. J. Speech Technol. , 2 , 303 - 312
    34. 34)
      • H. Pezeshk , S. Naghizadeh , S. A. Malekpour .
        34. Pezeshk, H., Naghizadeh, S., Malekpour, S. A., et al: ‘A modified bidirectional hidden Markov model and its application in protein secondary structure prediction’. Second Int. Conf. Advanced Computer Control (ICACC), Shenyang, China, 2010.
        . Second Int. Conf. Advanced Computer Control (ICACC)
    35. 35)
      • L.I. Kuncheva . (2014)
        35. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley-Interscience, Hoboken, NJ, USA, 2014, 2nd edn.).
        .
    36. 36)
      • L. Xu , A. Krzyzak , C.Y. Suen .
        36. Xu, L., Krzyzak, A., Suen, C.Y.: ‘Methods of combining multiple classifiers and their applications to handwriting recognition’, IEEE Trans. Syst. Man Cybern., 1992, 22, (3), pp. 418435.
        . IEEE Trans. Syst. Man Cybern. , 3 , 418 - 435
    37. 37)
      • S. Günter , H. Bunke .
        37. Günter, S., Bunke, H.: ‘Ensembles of classifiers for handwritten word recognition’, Int. J. Doc. Anal. Recognit., 2003, 5, (4), pp. 224232.
        . Int. J. Doc. Anal. Recognit. , 4 , 224 - 232
    38. 38)
      • Y.S. Huang , C.Y. Suen .
        38. Huang, Y.S., Suen, C.Y.: ‘A method of combining multiple experts for the recognition of unconstrained handwritten numerals’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, (1), pp. 9094.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1 , 90 - 94
    39. 39)
      • Y. Kessentini , T. Burger , T. Paquet .
        39. Kessentini, Y., Burger, T., Paquet, T.: ‘Evidential combination of multiple HMM classifiers for multi-script handwriting recognition’, Comput. Intell. Knowl.-Based Syst. Des., 2010, 6178, pp. 445454.
        . Comput. Intell. Knowl.-Based Syst. Des. , 445 - 454
    40. 40)
      • M. Pechwitz , S.S. Maddouri , V. Märgner .
        40. Pechwitz, M., Maddouri, S.S., Märgner, V., et al: ‘IFN/ENIT -database of handwritten Arabic words’. Colloque Int. Francophone Surl'Ecrit et le Doucement, Hammamet, Tunisia, 2002, pp. 129136.
        . Colloque Int. Francophone Surl'Ecrit et le Doucement , 129 - 136
    41. 41)
      • E. Grosicki , M. Carré , J.M. Brodin .
        41. Grosicki, E., Carré, M., Brodin, J.M., et al: ‘Results of the RIMES evaluation campaign for handwritten mail processing’. Tenth Int. Conf. Document Analysis and Recognition, Barcelona, 2009, pp. 941945.
        . Tenth Int. Conf. Document Analysis and Recognition , 941 - 945
    42. 42)
      • T. Burger , Y. Kessentini , T. Paquet .
        42. Burger, T., Kessentini, Y., Paquet, T.: ‘Dempster–Shafer based rejection strategy for handwritten word recognition’. Int. Conf. Document Analysis and Recognition, Beijing, 2011, pp. 528532.
        . Int. Conf. Document Analysis and Recognition , 528 - 532
    43. 43)
      • S.A. Azeem , H. Ahmed .
        43. Azeem, S.A., Ahmed, H.: ‘Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 399412.
        . Int. J. Doc. Anal. Recognit. , 4 , 399 - 412
    44. 44)
      • B. Verma , P. Gader , W. Chen .
        44. Verma, B., Gader, P., Chen, W.: ‘Fusion of multiple handwritten word recognition techniques’, Pattern Recognit. Lett., 2001, 22, (9), pp. 991998.
        . Pattern Recognit. Lett. , 9 , 991 - 998
    45. 45)
      • J.J. Hull .
        45. Hull, J.J.: ‘A database for handwritten text recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (5), pp. 550554.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 550 - 554
    46. 46)
      • H. Salimi , D. Giveki .
        46. Salimi, H., Giveki, D.: ‘Farsi/Arabic handwritten digit recognition based on ensemble of SVD classifiers and reliable multi-phase PSO combination rule’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 371386.
        . Int. J. Doc. Anal. Recognit. , 4 , 371 - 386
    47. 47)
      • V. Frinken , T. Peter , A. Fischer .
        47. Frinken, V., Peter, T., Fischer, A., et al: ‘Improved handwriting recognition by combining two forms of hidden Markov models and a recurrent neural network’, Computer Analysis of Images and Patterns, Berlin, Heidelberg, Germany, 2009 (LNCS, 5702), pp. 189196.
        . Computer Analysis of Images and Patterns , 189 - 196
    48. 48)
      • Y.C. Chim , A.A. Kassim , Y. Ibrahim .
        48. Chim, Y.C., Kassim, A.A., Ibrahim, Y.: ‘Dual classifier system for hand printed alphanumeric character recognition’, Pattern Anal. Appl., 1998, 1, (3), pp. 155162.
        . Pattern Anal. Appl. , 3 , 155 - 162
    49. 49)
      • R.M.O. Cruz , G.D.C. Cavalcanti , T.I. Ren .
        49. Cruz, R.M.O., Cavalcanti, G.D.C., Ren, T.I.: ‘An ensemble classifier for offline cursive character recognition using multiple feature extraction techniques’. Int. Joint Conf. Neural Networks, Barcelona, Spain, 2010, pp. 18.
        . Int. Joint Conf. Neural Networks , 1 - 8
    50. 50)
      • H. Abed , V. Märgner .
        50. Abed, H., Märgner, V.: ‘A framework for the combination of different Arabic handwritten word recognition systems’. Int. Conf. Pattern Recognition, Istanbul, Turkey, 2010, pp. 19041907.
        . Int. Conf. Pattern Recognition , 1904 - 1907
    51. 51)
      • S.A.A.A. Arani , E. Kabir , R. Ebrahimpour .
        51. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Handwritten Farsi word recognition using NN-based fusion of HMM classifiers with different types of features’, Int. J. Image Graph., accepted, to be published.
        . Int. J. Image Graph.
    52. 52)
      • R. Azmi , E. Kabir .
        52. Azmi, R., Kabir, E.: ‘A new segmentation technique for omnifont Farsi text’, Pattern Recognit. Lett., 2001, 22, (2), pp. 97104.
        . Pattern Recognit. Lett. , 2 , 97 - 104
    53. 53)
      • M. Mohamed , P. Gader .
        53. Mohamed, M., Gader, P.: ‘Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation based dynamic programming techniques’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (5), pp. 548554.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 548 - 554
    54. 54)
      • O. Michael . (1986)
        54. Michael, O.: ‘Sensory evaluation of food: statistical methods and procedures’ (CRC Press, New York, NY, USA, 1986), p. 487, ISBN 0-824-77337-3.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0645
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address