http://iet.metastore.ingenta.com
1887

Combining RtL and LtR HMMs to recognise handwritten Farsi words of small- and medium-sized vocabularies

Combining RtL and LtR HMMs to recognise handwritten Farsi words of small- and medium-sized vocabularies

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a method for holistic recognition of handwritten Farsi words is proposed, which fuses the outputs of right-to-left (RtL) and left-to-right (LtR) hidden Markov models (HMMs). The experimental results on 16,000 images of 200 names of Iranian cities, from the ‘Iranshahr 3’ are presented and compared with those methods using only RtL or LtR models. Experimental results show that the main sources of error are similar beginnings or similar endings of the words. Since RtL and LtR models when dealing with the words behave differently, there is notable error diversity between the two classifiers in such a way that their combination increases the recognition rate. Compared to the RtL-HMM, the product of output scores of the RtL and LtR-HMMs reduces the classification error to about 6, 6 and 3%, for three different feature sets. A subjective error analysis on the results is also provided.

References

    1. 1)
      • 1. Vajda, S., Roy, K., Pal, U., et al: ‘Automation of Indian postal documents written in Bangla and English’, Int. J. Pattern Recognit. Artif. Intell., 2009, 23, (8), pp. 15991632.
    2. 2)
      • 2. Pal, U., Belaïd, A., Choisy, C.: ‘Touching numeral segmentation using water reservoir concept’, Pattern Recognit. Lett., 2003, 24, (1–3), pp. 261272.
    3. 3)
      • 3. Ye, M., Viola, P.A., Raghupathy, S., et al: ‘Learning to group text lines and regions in free form handwritten notes’. Ninth Int. Conf. Document Analysis and Recognition, Curitiba, 2007, vol. 1, pp. 2832.
    4. 4)
      • 4. Govindaraju, V., Xue, H.: ‘Fast handwriting recognition for indexing historical documents’. Proc. First Int. Workshop Document Image Analysis for Libraries, Palo Alto, 2004, pp. 314320.
    5. 5)
      • 5. Steinherz, T., Rivlin, E., Intrator, N.: ‘Off-line cursive script word recognition: a survey’, Int. J. Doc. Anal. Recognit., 1999, 2, (2), pp. 90110.
    6. 6)
      • 6. Lu, Y., Shridhar, M.: ‘Character segmentation in handwritten words – an overview’, Pattern Recognit., 1996, 29, (1), pp. 7796.
    7. 7)
      • 7. Madhvanath, S., Govindaraju, V.: ‘The role of holistic paradigms in handwritten word recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 149164.
    8. 8)
      • 8. Choisy, C., Belaïd, A.: ‘Cross-learning in analytic word recognition without segmentation’, Int. J. Doc. Anal. Recognit., 2002, 4, (4), pp. 281289.
    9. 9)
      • 9. Masroori, K., Kabir, E.: ‘Handwritten Farsi word recognition using DTW algorithm’, Daneshvar J., 1999, 25, pp. 5968, in Farsi.
    10. 10)
      • 10. Arani, S.A.A.A., Kabir, E.: ‘Neural networks combination based on negative correlation learning for handwritten Farsi word recognition’. 12th Conf. Intelligent Systems, Bam, Kerman, Iran, 2014, in Farsi.
    11. 11)
      • 11. Bayesteh, E., Ahmadifard, A., Khosravi, H.: ‘A lexicon reduction method based on clustering word images in offline Farsi handwritten word recognition systems’. Seventh Iranian Conf. Machine Vision and Image Processing (MVIP), Tehran, Iran, 2011.
    12. 12)
      • 12. Mozaffari, S., Faez, K., Märgner, V., et al: ‘Lexicon reduction using dots for off-line Farsi/Arabic handwritten word recognition’, Pattern Recognit. Lett., 2008, 29, (6), pp. 724734.
    13. 13)
      • 13. Davoudi, H., Cheriet, M., Kabir, E.: ‘Lexicon reduction of handwritten Arabic subwords based on the prominent shape regions’, Int. J. Doc. Anal. Recognit., 2016, 19, (2), pp. 139153.
    14. 14)
      • 14. Frinken, V., Uchida, S.: ‘Deep BLSTM neural networks for unconstrained continuous handwritten text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 911915.
    15. 15)
      • 15. Marti, U.V., Bunke, H.: ‘The IAM-database: an English sentence database for offline handwriting recognition’, Int. J. Doc. Anal. Recognit., 2002, 5, (1), pp. 3946.
    16. 16)
      • 16. Graves, A., Liwicki, M., Fernández, S., et al: ‘A novel connectionist system for unconstrained handwriting recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (5), pp. 855868.
    17. 17)
      • 17. Maitra, D.S., Bhattacharya, U., Parui, S.K.: ‘CNN based common approach to handwritten character recognition of multiple scripts’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 10211025.
    18. 18)
      • 18. Kim, I., Xie, X.: ‘Handwritten Hangul recognition using deep convolutional neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (1), pp. 113.
    19. 19)
      • 19. Yang, W., Jin, L., Xie, Z., et al: ‘Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 551555.
    20. 20)
      • 20. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Handwritten Farsi (Arabic) word recognition: a holistic approach using discrete HMM’, Pattern Recognit., 2001, 34, (5), pp. 10571065.
    21. 21)
      • 21. Dehghan, M., Faez, K., Ahmadi, M., et al: ‘Unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov models’, Pattern Recognit. Lett., 2001, 22, (2), pp. 209214.
    22. 22)
      • 22. Khorsheed, M.S.: ‘Recognizing handwritten Arabic manuscripts using a single hidden Markov model’, Pattern Recognit. Lett., 2003, 24, (14), pp. 22352242.
    23. 23)
      • 23. Graves, A., Schmidhuber, J.: ‘Offline handwriting recognition with multidimensional recurrent neural networks’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2008, vol. 21.
    24. 24)
      • 24. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Combination of context-dependent bidirectional long short-term memory classifiers for robust offline handwriting recognition’, Pattern Recognit. Lett., 2017, 90, pp. 5864.
    25. 25)
      • 25. Chherawala, Y., Roy, P.P., Cheriet, M.: ‘Feature set evaluation for offline handwriting recognition systems: application to the recurrent neural network model’, IEEE Trans. Cybern., 2016, 46, (12), pp. 28252836.
    26. 26)
      • 26. Abandah, G.A., Graves, A., Al-Shagoor, B., et al: ‘Automatic diacritization of Arabic text using recurrent neural networks’, Int. J. Doc. Anal. Recognit., 2015, 18, (2), pp. 183197.
    27. 27)
      • 27. Liu, X., Tang, B., Wang, Z., et al: ‘Chart classification by combining deep convolutional networks and deep belief networks’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 801805.
    28. 28)
      • 28. Harley, A.W., Ufkes, A., Derpanis, K.G.: ‘Evaluation of deep convolutional nets for document image classification and retrieval’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 991995.
    29. 29)
      • 29. Zheng, Y., Cai, Y., Zhong, G., et al: ‘Stretching deep architectures for text recognition’. 13th Int. Conf. Document Analysis and Recognition, Tunis, 2015, pp. 236240.
    30. 30)
      • 30. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Farsi handwritten word recognition using image gradient and hidden Markov model’. Ninth Conf. Machine Vision and Image Processing, Tehran, Iran, 2015, in Farsi.
    31. 31)
      • 31. Zacher, B., Lidschreiber, M., Cramer, P., et al: ‘Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle’, Mol. Syst. Biol., 2014, 10, (12), p. 768.
    32. 32)
      • 32. Ejlali, N., Pezeshk, H.: ‘A bidirectional hidden Markov model in linear memory’, J. Stat. Sci., 2009, 2, (2), pp. 131148.
    33. 33)
      • 33. Kadim, A., Lazrek, A.: ‘Bidirectional HMM-based Arabic POS tagging’, Int. J. Speech Technol., 2016, 19, (2), pp. 303312.
    34. 34)
      • 34. Pezeshk, H., Naghizadeh, S., Malekpour, S. A., et al: ‘A modified bidirectional hidden Markov model and its application in protein secondary structure prediction’. Second Int. Conf. Advanced Computer Control (ICACC), Shenyang, China, 2010.
    35. 35)
      • 35. Kuncheva, L.I.: ‘Combining pattern classifiers: methods and algorithms’ (Wiley-Interscience, Hoboken, NJ, USA, 2014, 2nd edn.).
    36. 36)
      • 36. Xu, L., Krzyzak, A., Suen, C.Y.: ‘Methods of combining multiple classifiers and their applications to handwriting recognition’, IEEE Trans. Syst. Man Cybern., 1992, 22, (3), pp. 418435.
    37. 37)
      • 37. Günter, S., Bunke, H.: ‘Ensembles of classifiers for handwritten word recognition’, Int. J. Doc. Anal. Recognit., 2003, 5, (4), pp. 224232.
    38. 38)
      • 38. Huang, Y.S., Suen, C.Y.: ‘A method of combining multiple experts for the recognition of unconstrained handwritten numerals’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, (1), pp. 9094.
    39. 39)
      • 39. Kessentini, Y., Burger, T., Paquet, T.: ‘Evidential combination of multiple HMM classifiers for multi-script handwriting recognition’, Comput. Intell. Knowl.-Based Syst. Des., 2010, 6178, pp. 445454.
    40. 40)
      • 40. Pechwitz, M., Maddouri, S.S., Märgner, V., et al: ‘IFN/ENIT -database of handwritten Arabic words’. Colloque Int. Francophone Surl'Ecrit et le Doucement, Hammamet, Tunisia, 2002, pp. 129136.
    41. 41)
      • 41. Grosicki, E., Carré, M., Brodin, J.M., et al: ‘Results of the RIMES evaluation campaign for handwritten mail processing’. Tenth Int. Conf. Document Analysis and Recognition, Barcelona, 2009, pp. 941945.
    42. 42)
      • 42. Burger, T., Kessentini, Y., Paquet, T.: ‘Dempster–Shafer based rejection strategy for handwritten word recognition’. Int. Conf. Document Analysis and Recognition, Beijing, 2011, pp. 528532.
    43. 43)
      • 43. Azeem, S.A., Ahmed, H.: ‘Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 399412.
    44. 44)
      • 44. Verma, B., Gader, P., Chen, W.: ‘Fusion of multiple handwritten word recognition techniques’, Pattern Recognit. Lett., 2001, 22, (9), pp. 991998.
    45. 45)
      • 45. Hull, J.J.: ‘A database for handwritten text recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (5), pp. 550554.
    46. 46)
      • 46. Salimi, H., Giveki, D.: ‘Farsi/Arabic handwritten digit recognition based on ensemble of SVD classifiers and reliable multi-phase PSO combination rule’, Int. J. Doc. Anal. Recognit., 2013, 16, (4), pp. 371386.
    47. 47)
      • 47. Frinken, V., Peter, T., Fischer, A., et al: ‘Improved handwriting recognition by combining two forms of hidden Markov models and a recurrent neural network’, Computer Analysis of Images and Patterns, Berlin, Heidelberg, Germany, 2009 (LNCS, 5702), pp. 189196.
    48. 48)
      • 48. Chim, Y.C., Kassim, A.A., Ibrahim, Y.: ‘Dual classifier system for hand printed alphanumeric character recognition’, Pattern Anal. Appl., 1998, 1, (3), pp. 155162.
    49. 49)
      • 49. Cruz, R.M.O., Cavalcanti, G.D.C., Ren, T.I.: ‘An ensemble classifier for offline cursive character recognition using multiple feature extraction techniques’. Int. Joint Conf. Neural Networks, Barcelona, Spain, 2010, pp. 18.
    50. 50)
      • 50. Abed, H., Märgner, V.: ‘A framework for the combination of different Arabic handwritten word recognition systems’. Int. Conf. Pattern Recognition, Istanbul, Turkey, 2010, pp. 19041907.
    51. 51)
      • 51. Arani, S.A.A.A., Kabir, E., Ebrahimpour, R.: ‘Handwritten Farsi word recognition using NN-based fusion of HMM classifiers with different types of features’, Int. J. Image Graph., accepted, to be published.
    52. 52)
      • 52. Azmi, R., Kabir, E.: ‘A new segmentation technique for omnifont Farsi text’, Pattern Recognit. Lett., 2001, 22, (2), pp. 97104.
    53. 53)
      • 53. Mohamed, M., Gader, P.: ‘Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation based dynamic programming techniques’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (5), pp. 548554.
    54. 54)
      • 54. Michael, O.: ‘Sensory evaluation of food: statistical methods and procedures’ (CRC Press, New York, NY, USA, 1986), p. 487, ISBN 0-824-77337-3.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0645
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address