Dynamic ROI extraction method for hand vein images

Dynamic ROI extraction method for hand vein images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The region of interest (ROI) extraction is important in hand vein recognition system. The main challenges for accurate extraction of the vein region are to overcome variability in hand size, lighting conditions, orientation, appearance, noisy background, and non-uniform grey levels in foreground region. Here, we propose a new dynamic hand vein ROI extraction, preserving the whole vein area. A hand segmentation process robust to the mentioned challenges, contributing to an accurate definition of hand edge delimitations is proposed. Our approach is validated on both dorsal vein Bosphorus database and palm vein Vera database. Our proposed method accuracy is ∼98% for Bosphorus database and 90% for Vera database. To illustrate the efficiency of the proposed ROI extraction, we insert it as a first block in a hand vein recognition system. Then, a comparison study at system level with recent approaches is carried on, showing an improvement of the whole system area under the curve by a rate of 12% and 2% for Bosphorus and Vera databases, respectively. The speed performances demonstrate a mean run time of 0.73 s for Bosphorus database and 1.2 s for Vera database, proving that the proposed method can be conveniently used on a real-time application.


    1. 1)
      • 1. Li, K., Zhang, G., Wang, Y., et al: ‘Hand-dorsa vein recognition based on improved partition local binary patterns’. Chinese Conf. on Biometric Recognition, 2015, pp. 312320.
    2. 2)
      • 2. Trabelsi, R.B., Masmoudi, A.D., Masmoudi, D.S.: ‘Hand vein image enhancement with radon like features descriptor’, Int. J. Comput., Electr., Autom., Control Inf. Eng., 2013, 7, (6), pp. 797800.
    3. 3)
      • 3. Masmoudi, A.D., Trabelsi, R.B., Masmoudi, D.S.: ‘A novel finger vein recognition system based on monogenic local binary pattern features’, Int. J. Eng. Technol. (IJET), 2014, 5, (6), pp. 45284535.
    4. 4)
      • 4. Trabelsi, R.B., Masmoudi, A.D., Masmoudi, D.S.: ‘A novel biometric system based hand vein recognition’, J. Test. Eval., 2013, 42, (4), pp. 110.
    5. 5)
      • 5. Masmoudi, A.D., Trabelsi, R.B., Krid, M., et al: ‘Implementation of a fingervein recognition system based on improved Gaussian matched filter’, J. Magnt. Res. Rep., 2014, 2, (4), pp. 251260.
    6. 6)
      • 6. Trabelsi, R.B., Masmoudi, A.D., Masmoudi, D.S.: ‘A new multimodal biometric system based on finger vein and hand vein recognition’, Int. J. Eng. Technol., 2013, 5, (4), pp. 31753183.
    7. 7)
      • 7. Yakno, M., Mohamad-Saleh, J., Rosdi, B.A.: ‘New technique for larger ROI extraction of hand vein images’. Int. Conf. on BioSignal Analysis, Processing and Systems (ICBAPS), 2015, pp. 8287.
    8. 8)
      • 8. Prasad, M.V., Kavati, I., Ravindra, K.: ‘Hand vein authentication system using dynamic ROI’. Int. Symp. on Security in Computing and Communication, 2013, pp. 203212.
    9. 9)
      • 9. Prasad, M.V., Kavati, I.: ‘Hand vein authentication system using connected minutiae neighbours’, Int. J. Trust Manage. Comput. Commun., 2014, 2, (3), pp. 296308.
    10. 10)
      • 10. Trabelsi, R.B., Masmoudi, A.D., Masmoudi, D.S.: ‘Hand vein recognition system with circular difference and statistical directional patterns based on an artificial neural network’, Multimedia Tools Appl., 2016, 75, (2), pp. 687707.
    11. 11)
      • 11. Masmoudi, A.D., Masmoudi, D.S., Trabelsi, R.B.: ‘A novel biometric system based hand vein recognition’, J. Test. Eval., 2013, 42, (4), pp. 110.
    12. 12)
      • 12. Lin, C.L., Fan, K.C.: ‘Biometric verification using thermal images of palm-dorsa vein patterns’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 199213.
    13. 13)
      • 13. Kumar, A., Prathyusha, K.V.: ‘Personal authentication using hand vein triangulation and knuckle shape’, IEEE Trans. Image Process., 2009, 18, (9), pp. 21272136.
    14. 14)
      • 14. Kumar, A., Hanmandlu, M., Gupta, H.M.: ‘Online biometric authentication using hand vein patterns’. IEEE Symp. on Computational Intelligence for Security and Defense Applications, 2009, pp. 17.
    15. 15)
      • 15. Lu, W., Qi, X., Liu, C.: ‘Fusion of palm dorsal vein and hand geometry for personal identification based on linear discriminant analysis’. Int. Conf. on Frontier of Computer Science and Technology, 2010, pp. 532536.
    16. 16)
      • 16. Wang, L., Leedham, G., Cho, D.S.Y.: ‘Minutiae feature analysis for infrared hand vein pattern biometrics’, Pattern Recognit., 2008, 41, (3), pp. 920929.
    17. 17)
      • 17. Wang, M., Tang, D.: ‘Region of interest extraction for finger vein images with less information losses’. Multimedia Tools and Applications, 2017, pp. 113.
    18. 18)
      • 18. Sezgin, M., Sankur, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, Int. J. Electron. Imaging (IJEI), 2004, 13, (1), pp. 146168.
    19. 19)
      • 19. Saini, R.: ‘Document image binarization techniques, developments and related issues: a review’, Int. J. Comput. Appl., 2015, 116, (7), pp. 4144.
    20. 20)
      • 20. Gatos, B., Pratikakis, I., Perantonis, S.J.: ‘Adaptive degraded document image binarization’, Pattern Recognit., 2006, 39, (3), pp. 317327.
    21. 21)
      • 21. Yuksel, A., Akarun, L., Sankur, B.: ‘Hand vein biometry based on geometry and appearance methods’, IET Comput. Vis., 2011, 5, (6), pp. 398406.
    22. 22)
      • 22. Bosphorus Hand Vein Database: Available at
    23. 23)
      • 23. Vera Palm Vein Database: Available at
    24. 24)
      • 24. Zhu, X., Huang, D.: ‘Hand dorsal vein recognition based on hierarchically structured texture and geometry features’. Chinese Conf. on Biometric Recognition, 2012, pp. 157164.
    25. 25)
      • 25. Hadid, A., Ylioinas, J., Bengherabi, M., et al: ‘Gender and texture classification: a comparative analysis using 13 variants of local binary patterns’. Pattern Recognit. Lett., 2015, 68, pp. 231238.
    26. 26)
      • 26. Kalyoncu, C., Toygar, ÃŰ.: ‘GTCLC: leaf classification method using multiple descriptors’, IET Comput. Vis., 2016, 10, (7), pp. 700708.
    27. 27)
      • 27. Farmanbar, M., Toygar, Ã.Ű.: ‘Spoof detection on face and palmprint biometrics’. Signal, Image and Video Processing, 2017, pp. 18.

Related content

This is a required field
Please enter a valid email address