http://iet.metastore.ingenta.com
1887

Visual multiple-object tracking for unknown clutter rate

Visual multiple-object tracking for unknown clutter rate

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In multi-object tracking applications, model parameter tuning is a prerequisite for reliable performance. In particular, it is difficult to know statistics of false measurements due to various sensing conditions and changes in the field of views. In this study, the authors are interested in designing a multi-object tracking algorithm that handles unknown false measurement rate. The recently proposed robust multi-Bernoulli filter is employed for clutter estimation while generalised labelled multi-Bernoulli filter is considered for target tracking. Performance evaluation with real videos demonstrates the effectiveness of the tracking algorithm for real-world scenarios.

References

    1. 1)
      • 1. Mahler, R.: ‘Statistical multisource-multitarget information Fusion’ (Artech House, Norwood, MA, 2007).
    2. 2)
      • 2. Bar-Shalom, Y., Fortmann, T.E.: ‘Tracking and data Association’ (Academic Press, San Diego, 1998).
    3. 3)
      • 3. Mahler, R., Vo, B.-T., Vo, B.-N.: ‘CPHD filtering with unknown clutter rate and detection profile’, IEEE Trans. Signal Process., 2011, 59, (8), pp. 34973513.
    4. 4)
      • 4. Reid, D.: ‘An algorithm for tracking multiple targets’, IEEE Trans. Autom. Control, 1979, 24, (6), pp. 843854.
    5. 5)
      • 5. Breitenstein, M.D., Reichlin, F., Leibe, B., et al: ‘Online multiperson tracking-by-detection from a single, uncalibrated camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18201833.
    6. 6)
      • 6. Laet, T.D., Bruyninckx, H., Schutter, J.D.: ‘Shape-based online multitarget tracking and detection for targets causing multiple measurements: variational Bayesian clustering and lossless data association’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 24772491.
    7. 7)
      • 7. Hoseinnezhad, R., Vo, B.-N., Vo, B.-T.: ‘Visual tracking in background subtracted image sequences via multi-Bernoulli filtering’, IEEE Trans. Signal Process., 2013, 61, (2), pp. 392397.
    8. 8)
      • 8. Zhang, L., Li, Y., Nevatia, R.: ‘Global data association for multi-object tracking using network flows’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, USA, 2008.
    9. 9)
      • 9. Milan, A., Roth, S., Schinlder, K.: ‘Continuous energy minimization for multitarget tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (1), pp. 5872.
    10. 10)
      • 10. Mahler, R.: ‘Multi-target Bayes filtering via first-order multi-target moments’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (4), pp. 11521178.
    11. 11)
      • 11. Mahler, R.: ‘PHD filters of higher order in target number’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 15231543.
    12. 12)
      • 12. Rezatofighi, S.H., Gould, S., Vo, B.-T., et al: ‘Multi-target tracking with time-varying clutter rate and detection profile: application to time-lapse cell microscopy sequences’, IEEE Trans. Med. Imaging, 2015, 34, (6), pp. 13361348.
    13. 13)
      • 13. Beard, M., Vo, B.-T., Vo, B.-N.: ‘Multi-target filtering with unknown clutter density using a bootstrap GM-CPHD filter’, IEEE Signal Process. Lett., 2013, 20, (4), pp. 323326.
    14. 14)
      • 14. Vo, B.-T., Vo, B.-N., Cantoni, A.: ‘Analytic implementations of the cardinalized probability hypothesis density filter’, IEEE Trans. Signal Process., 2007, 55, (7), pp. 35533567.
    15. 15)
      • 15. Vo, B.-T., Vo, B.-N., Hoseinnezhad, R., et al: ‘Robust multi-Bernoulli filtering’, IEEE J. Select. Top. Signal Process., 2013, 7, (3), pp. 399409.
    16. 16)
      • 16. Kim, D.Y., Jeon, M.: ‘Robust multi-Bernoulli filtering for visual tracking’. Proc. IEEE Conf. Control Automation and Information Sciences, Gwangju, South Korea, 2014.
    17. 17)
      • 17. Vo, B.-T., Vo, B.-N., Cantoni, A.: ‘The cardinality balanced multi-target multi-Bernoulli filter and its implementations’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 409423.
    18. 18)
      • 18. Hoseinnezhad, R., Vo, B.-N., Vo, B.-T., et al: ‘Visual tracking of numerous targets via multi-Bernoulli filtering of image data’, Pattern Recognit., 2012, 45, (10), pp. 36253635.
    19. 19)
      • 19. Vo, B.-T., Vo, B.-N.: ‘Labeled random finite sets and multi-object conjugate priors’, IEEE Trans. Signal Process., 2013, 61, (13), pp. 34603475.
    20. 20)
      • 20. Vo, B.-T., Vo, B.-N., Phung, D.: ‘Labeled random finite sets and the Bayes multi-target tracking filter’, IEEE Trans. Signal Process., 2014, 62, (24), pp. 65546567.
    21. 21)
      • 21. Schuhmacher, D., Vo, B.-T., Vo, B.-N.: ‘A consistent metric for performance evaluation of multi-object filters’. IEEE Trans. Signal Process., 2008, 56, (8), pp. 34473457.
    22. 22)
      • 22. Yoon, J.H., Yang, M.-H., Lim, J., et al: ‘Bayesian multi-object tracking using motion context from multiple objects’. Proc. IEEE Winter Conf. on Applications of Computer Vision (WACV), Hawaii, USA, 2015.
    23. 23)
      • 23. Kuo, C.-H., Nevatia, R.: ‘How does person identity recognition help multi-person tracking?’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, Colorado, USA, 2011.
    24. 24)
      • 24. Andriluka, M., Roth, S., Schiele, B.: ‘People-tracking-by-detection and people-detection-by-tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008.
    25. 25)
      • 25. Ess, A., Leibe, B., Gool, L.V.: ‘Depth and appearance for mobile scene analysis’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007.
    26. 26)
      • 26. Ferryman, J., Shahrokni, A.: ‘PETS2009: Dataset and challenge’. IEEE Workshop Performance Evaluation of Tracking and Surveillance, Snowbird, Utah, USA, 2009.
    27. 27)
      • 27. Yoon, J.H., Lee, C.-R., Yang, M.-H., et al: ‘Online multi-object tracking via structural constraint event aggregation’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016.
    28. 28)
      • 28. Chenouard, N., Bloch, I., Olivo-Marin, J.-C.: ‘Multiple hypothesis tracking for cluttered biological image sequences’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (11), pp. 27362750.
    29. 29)
      • 29. Dollár, P., Tu, Z., Perona, P., et al: ‘Integral channel features’. BMVC, London, UK, 2009.
    30. 30)
      • 30. Dalal, N., Triggs, B.: ‘Histogram of oriented gradients for human detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), San Diego, California, USA, 2005.
    31. 31)
      • 31. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-Speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 583596.
    32. 32)
      • 32. Yuan, Y., Lu, Y., Wang, Q.: ‘Tracking as a whole: multi-target tracking by modeling group behavior with sequential detection’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (2), pp. 33393349.
    33. 33)
      • 33. Wang, Q., Fang, J., Yuan, Y.: ‘Multi-cue based tracking’, Neurocomputing, 2014, 131, pp. 227236.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0600
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0600
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address