http://iet.metastore.ingenta.com
1887

MSCS: MeshStereo with Cross-Scale Cost Filtering for fast stereo matching

MSCS: MeshStereo with Cross-Scale Cost Filtering for fast stereo matching

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

MeshStereo (MS) and cross-scale cost filtering (CSCF) are two most recently celebrated models for stereo matching. On one hand, MS model enlightens for fast solving the dense stereo correspondence problem according to a region-based opinion. On the other hand, CSCF model could generate more robust matching cost volumes than single scale. In this study, the authors weave these two models together for attaining greater and faster disparity estimation. With CSCF, more powerful initial volumes of matching cost are computed and they are conducted as the data term of MS energy function model. More importantly, the novel-fused stereo model also draws a closer connection between multi-scale aggregated and global algorithms. Integrating the advantages of both stereo models, they name the presented one as MS with cross-scale (MSCS). Performance evaluations on Middlebury v.2 and v.3 stereo data sets demonstrate that the proposed MSCS outperforms other four most challenging stereo matching algorithms; and also performs better on Microsoft i2i stereo videos. In addition, thanks to this novel-fused model, MSCS requires fewer iteration times for optimising and makes it surprisingly possesses a much faster execution time.

References

    1. 1)
      • 1. Scharstein, D., Szeliski, R.: ‘A taxonomy and evaluation of dense two-frame stereo correspondence algorithms’, Int. J. Comput. Vis. (IJCV), 2002, 47, pp. 742.
    2. 2)
      • 2. Gong, M., Yang, R., Wang, L., et al: ‘A performance study on different cost aggregation approaches used in real-time stereo matching’, Int. J. Comput. Vis. (IJCV), 2007, 75, pp. 283296.
    3. 3)
      • 3. Tombari, F., Mattoccia, S., Stefano, L., et al: ‘Classification and evaluation of cost aggregation methods for stereo correspondence’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 2008, pp. 18.
    4. 4)
      • 4. Yoon, K.J., Kweon, I.S.: ‘Adaptive support-weight approach for correspondence search’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2006, 28, pp. 650656.
    5. 5)
      • 5. Hosni, A., Bleyer, M., Gelautz, M., et al: ‘Local stereo matching using geodesic support weights’. IEEE Int. Conf. Image Processing (ICIP), Cairo, Egypt, 2009, pp. 20932096.
    6. 6)
      • 6. Min, D., Lu, J., Do, M.N.: ‘A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy?’. IEEE Int. Conf. Computer Vision (ICCV), Barcelona, Spain, 2011, pp. 15671574.
    7. 7)
      • 7. Min, D., Lu, J., Do, M.N.: ‘Joint histogram based cost aggregation for stereo matching’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2013, 35, pp. 25392545.
    8. 8)
      • 8. Hu, W., Zhang, K., Sun, L., et al: ‘Virtual support window for adaptive-weight stereo matching’, IEEE Visual Commun. Image Process. (VCIP), Tainan City, Taiwan, 2011, pp. 14.
    9. 9)
      • 9. Zhang, K., Li, J., Li, Y., et al: ‘Binary stereo matching’. IEEE Int. Conf. Pattern Recognition (ICPR), Tsukuba, Japan, 2012, pp. 356359.
    10. 10)
      • 10. Bleyer, M., Breiteneder, C.: ‘Stereo matching-state-of-the-art and research challenges’, Chapter 6 of Adv. Top. Comput. Vis., 2013, pp. 143179.
    11. 11)
      • 11. Yang, Q.: ‘A non-local cost aggregation method for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2012, pp. 14021409.
    12. 12)
      • 12. Mei, X., Sun, X., Dong, W., et al: ‘Segment-tree based cost aggregation for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 2013, pp. 313320.
    13. 13)
      • 13. Yang, Q.: ‘Local smoothness enforced cost volume regularization for fast stereo correspondence’, IEEE Signal Process. Lett. (SPL), 2015, 22, pp. 14291433.
    14. 14)
      • 14. Yao, P., Zhang, H., Xue, Y., et al: ‘Iterative color-depth MST cost aggregation for stereo matching’. IEEE Int. Conf. Multimedia & Expo (ICME), Seattle, WA, USA, 2016, pp. 16.
    15. 15)
      • 15. Yao, P., Zhang, H., Xue, Y., et al: ‘Segment-tree based cost aggregation for stereo matching with enhanced segmentation advantage’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LO, USA, 2017, pp. 20272031.
    16. 16)
      • 16. Yang, Q., Wang, L., Yang, R., et al: ‘Real-time global stereo matching using hierarchical belief propagation’. British Machine Vision Conf. (BMVC), Edinburgh, UK, 2006, pp. 110.
    17. 17)
      • 17. Yang, Q., Wang, L., Yang, R., et al: ‘Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2008, 31, pp. 492504.
    18. 18)
      • 18. Yang, Q., Wang, L., Ahuja, N.: ‘A constant space belief propagation algorithm for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 2010, pp. 14581465.
    19. 19)
      • 19. Boykov, Y., Veksler, O., Zabih, R.: ‘Fast approximate energy minimization via graph cuts’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2001, 23, pp. 12221239.
    20. 20)
      • 20. Taniai, T., Matsushita, Y., Naemura, T.: ‘Graph cut based continuous stereo matching using locally shared labels’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 16131620.
    21. 21)
      • 21. Hirschmuller, H.: ‘Stereo processing by semi-global matching and mutual information’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2008, 30, pp. 328341.
    22. 22)
      • 22. Facciolo, G., Franchis, C., Meinhardt, E.: ‘MGM: a significantly more global matching for stereo vision’. British Machine Vision Conf. (BMVC), Swansea, UK, 2015, pp. 112.
    23. 23)
      • 23. Jure, Z., Yann, L.: ‘Computing the stereo matching cost with a convolutional neural network’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 15921599.
    24. 24)
      • 24. Kyung-Rae, K., Chang-Su, K.: ‘Adaptive smoothness constraints for efficient stereo matching using texture and edge information’. IEEE Int. Conf. Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp. 34293433.
    25. 25)
      • 25. Zhang, C., Li, Z., Cheng, Y., et al: ‘MeshStereo: a global stereo model with mesh alignment regularization for view interpolation’. IEEE Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 20572065.
    26. 26)
      • 26. Zhang, K., Fang, Y., Min, D., et al: ‘Cross-scale cost aggregation for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 407414.
    27. 27)
      • 27. Zhang, K., Fang, Y., Min, D., et al: ‘Cross-scale cost aggregation for stereo matching’, IEEE Trans. Circuits Syst. Video Technol. (TCSVT), 2017, 27, pp. 965976.
    28. 28)
      • 28. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixels methods’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2012, 34, pp. 22742282.
    29. 29)
      • 29. Mozerov, M.G., Weijer, J.: ‘Accurate stereo matching by two-step energy minimization’, IEEE Trans. Image Process. (TIP), 2015, 24, pp. 11531163.
    30. 30)
      • 30. Besse, F., Rother, C., Fitzgibbon, A., et al: ‘PMBP: patch match belief propagation for correspondence field estimation’. British Machine Vision Conf. (BMVC), Surrey, UK, 2012, pp. 111.
    31. 31)
      • 31. Zhang, C., Li, Z., Cai, R., et al: ‘As-rigid-as-possible stereo under second order smoothness priors’. European Conf. Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 112126.
    32. 32)
      • 32. Yamaguchi, K., Hazan, T., McAllester, D., et al: ‘Continuous Markov random fields for robust stereo estimation’. European Conf. Computer Vision (ECCV), Florence, Italy, 2012, pp. 4558.
    33. 33)
      • 33. Yamaguchi, K., McAllester, D., Urtasun, R.: ‘Efficient joint segmentation, occlusion labeling, stereo and flow estimation’. European Conf. Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 756771.
    34. 34)
      • 34. Hu, W., Zhang, K., Sun, L., et al: ‘Comparisons reducing for local stereo matching using hierarchical structure’. IEEE Int. Conf. Multimedia & Expo (ICME), San Jose, CA, USA, 2013, pp. 16.
    35. 35)
      • 35. Jen, Y.-H., Dunn, E., Fite-Georgel, P., et al: ‘Adaptive scale selection for hierarchical stereo’. British Machine Vision Conf. (BMVC), Dundee, UK, 2011, pp. 110.
    36. 36)
      • 36. Tang, L., Garvin, M.K., Lee, K., et al: ‘Robust multiscale stereo matching from fundus images with radiometric differences’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2011, 33, pp. 22452258.
    37. 37)
      • 37. Bleyer, M., Rhemann, C., Rother, C.: ‘Patchmatch stereo – stereo matching with slanted support windows’. British Machine Vision Conf. (BMVC), Dundee, UK, 2011, pp. 111.
    38. 38)
      • 38. Kolmogorov, V.: ‘Convergent tree-reweighted message passing for energy minimization’, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 2006, 28, pp. 15681583.
    39. 39)
      • 39. Scharstein, D., Szeliski, R.: ‘Learning conditional random fields for stereo’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Minneapolis, MI, USA, 2007, pp. 18.
    40. 40)
      • 40. Hirschmuller, H., Scharstein, D.: ‘Evaluation of cost functions for stereo matching’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Minneapolis, MI, USA, 2007, pp. 18.
    41. 41)
      • 41. Scharstein, D., Hirschmuller, H., Kitajima, Y., et al: ‘High-resolution stereo datasets with subpixel-accurate ground truth’. German Conf. Pattern Recognition (GCPR), Munster, Germany, 2014, pp. 3142.
    42. 42)
      • 42. Microsoft i2i Stereo Video. Available at http://research.microsoft.com/enus/projects/i2i/data.aspx, accessed2016.
    43. 43)
      • 43. Milanfar, P.: ‘A tour of modern image filtering: new insights and methods, both practical and theoretical’, IEEE Signal Process. Mag., 2013, 30, pp. 106128.
    44. 44)
      • 44. Yao, P., Zhang, H., Xue, Y., et al: ‘SPMVP: spatial patchmatch stereo with virtual pixel aggregation’. Int. Conf. Neural Information Processing (ICONIP), Guangzhou, China, 2017, Part III, pp. 527542.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0599
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0599
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address