Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Superpixel texture analysis for classification of breast masses in dense background

Finding masses in dense background is a difficult task for even experienced radiologist. It is due to the similarity of intensity between the masses and the overlapped normal dense tissues. A novel method for classification of masses localised in dense background of breast is proposed. Nine structured superpixel patterns were generated using local binary pattern technique on superpixels. Analysis of these nine structured superpixel patterns revealed the most prominent ones, allowing for successful classification of malignant masses and normal dense breast regions. Two mammographic databases were used to evaluate the proposed approach: the publicly available digital database for screening mammography (DDSM), and a local database of mammograms (BreastScreen SA, BSSA). A total of 525 regions of interest (ROIs) were used (301 extracted from DDSM and 224 from BSSA). All 525 ROIs were localised in dense backgrounds of breasts. The results indicate that features generated from structured superpixel patterns can produce very effective and efficient texture descriptors of breast masses localised in dense background. Using Fisher linear discriminant analysis classifier, an area under the receiver operating characteristic curve score of 0.96 was achieved for DDSM and 0.93 for BSSA with only six features.

References

    1. 1)
      • 17. Duraisamy, S., Emperumal, S.: ‘Computer-aided mammogram diagnosis system using deep learning convolutional fully complex-valued relaxation neural network classifier’, IET Comput. Vis., 2017, 11, pp. 656662(6).
    2. 2)
      • 5. Hou, N., Hong, S., Wang, W., et al: ‘Hormone replacement therapy and breast cancer: heterogeneous risks by race, weight, and breast density’, J. Natl Cancer Inst., 2013, 105, (18), pp. 13651372.
    3. 3)
      • 25. Nock, R., Nielsen, F.: ‘Statistical region merging’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (11), pp. 14521458.
    4. 4)
      • 9. Chokri, F., Farida, M.H.: ‘Mammographic mass classification according to Bi-RADS lexicon’, IET Comput. Vis., 2017, 11, pp. 189198(9).
    5. 5)
      • 26. Gargouri, N., Masmoudi, A.D., Masmoudi, D.S., et al: ‘A new GLLD operator for mass detection in digital mammograms’, Int. J. Biomed. Imaging, 2012, 2012, pp. 113.
    6. 6)
      • 10. Obenauer, S., Sohns, C., Werner, C., et al: ‘Impact of breast density on computer-aided detection in full-field digital mammography’, J. Digit. Imaging, 2006, 19, (3), pp. 258263.
    7. 7)
      • 16. Dhungel, N., Carneiro, G., Bradley, A.P.: ‘A deep learning approach for the analysis of masses in mammograms with minimal user intervention’, Med. Image Anal., 2017, 37, pp. 114128.
    8. 8)
      • 32. Drucker, F., MacCormick, J.: ‘Fast superpixels for video analysis’. Workshop on Motion and Video Computing (WMVC), Snowbird, UT, USA, 2009, pp. 18.
    9. 9)
      • 15. Kooi, T., Litjens, G., van Ginneken, B., et al: ‘Large scale deep learning for computer aided detection of mammographic lesions’, Med. Image Anal., 2017, 35, pp. 303312.
    10. 10)
      • 31. Endres, I., Hoiem, D.: ‘Category-independent object proposals with diverse ranking’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (2), pp. 222234.
    11. 11)
      • 4. Wolfe, J.N.: ‘Breast patterns as an index of risk for developing breast cancer’, Am. J. Roentgenol., 1976, 126, pp. 11301137.
    12. 12)
      • 39. Heath, M., Bowyer, K., Kopans, D., et al: ‘The digital database for screening mammography’. Proc. Fifth Int. Workshop on Digital Mammography, Toronto, Canada, 2001, pp. 212218.
    13. 13)
      • 22. Midya, A., Chakraborty, J.: ‘Classification of benign and malignant masses in mammograms using multi-resolution analysis of oriented patterns’. IEEE 12th Int. Symp. Biomedical Imaging (ISBI), New York, NY, USA, 2015, pp. 411414.
    14. 14)
      • 30. Hussain, M., Khan, S., Muhammad, G., et al: ‘Effective extraction of Gabor features for false positive reduction and mass classification in mammography’, Appl. Math. Inf. Sci., 2014, 8, (1L), pp. 397412.
    15. 15)
      • 34. Hao, Z., Wang, Q., Ren, H., et al: ‘Multiscale superpixel classification for tumor segmentation in breast ultrasound images’. 2012 19th IEEE Int. Conf. Image Processing, Orlando, FL, USA, 2012, pp. 28172820.
    16. 16)
      • 21. Julesz, B.: ‘Textons, the elements of texture perception, and their interactions’, Nature, 1981, 290, (5802), pp. 9197.
    17. 17)
      • 35. Lee, H., Kim, J.: ‘Segmentation of overlapping cervical cells in microscopic images with superpixel partitioning and cell-wise contour refinement’. Computer Vision and Pattern Recognition (CVPR) Workshop on Computer Vision for Microscopy Image Analysis (CVMI), Las Vegas, NV, USA, 2016, pp. 6369.
    18. 18)
      • 18. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., et al: ‘Linear structures in mammographic images: detection and classification’, IEEE Trans. Med. Imaging, 2004, 23, (9), pp. 10771086.
    19. 19)
      • 20. Choi, J.Y., Ro, Y.M.: ‘Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms’, Phys. Med. Biol., 2012, 57, pp. 70297052.
    20. 20)
      • 6. Morton, M.J., Whaley, D.H., Brandt, K.R., et al: ‘Screening mammograms: interpretation with computer-aided detection prospective evaluation’, Radiology, 2006, 239, pp. 204212.
    21. 21)
      • 19. Llado, X., Oliver, A., Freixenet, J., et al: ‘A textural approach for mass false positive reduction in mammography’, Comput. Med. Imaging Graph., 2009, 33, pp. 415422.
    22. 22)
      • 28. Nascimento, M.Z., Martins, A.S., Neves, L.A., et al: ‘Classification of masses in mammographic image using wavelet domain features and polynomial classifier’, Expert Syst. Appl., 2013, 40, (15), pp. 62136221.
    23. 23)
      • 7. Oliver, A., Freixenet, J., Marti, J., et al: ‘A review of automatic mass detection and segmentation in mammographic images’, Med. Image Anal., 2010, 2, pp. 87110.
    24. 24)
      • 11. Bajger, M., Ma, F., Bottema, M.J.: ‘Automatic tuning of MST segmentation of mammograms for registration and mass detection algorithms’, Digit. Image Comput.: Tech. Appl. (DICTA), (Melbourne, Australia, 2009).
    25. 25)
      • 3. Castellano, C.R., Nunez, C.V., Boy, R.C., et al: ‘Impact of mammographic breast density on computer-assisted detection (CAD) in a breast imaging department’, Radiologia, 2011, 53, pp. 456461.
    26. 26)
      • 36. Ushizima, D.M., Bianchi, A.G.C., Carneiro, C.M.: ‘Segmentation of subcellular compartments combining superpixel representation with Voronoi diagrams’. Overlapping Cervical Cytology Image Segmentation Challenge-IEEE ISBI, Beijing, China, 2014, p. 12.
    27. 27)
      • 24. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, pp. 971987.
    28. 28)
      • 14. Abdel-Nasser, M., Rashwan, H.A., Puig, D., et al: ‘Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern’, Expert Syst. Appl., 2015, 42, (24), pp. 94999511.
    29. 29)
      • 27. Hussain, M.: ‘False-positive reduction in mammography using multiscale spatial weber law descriptor and support vector machines’, Neural Comput. Appl., 2013, 25, (1), pp. 8393.
    30. 30)
      • 29. Junior, G.B., de Paiva, A.C., Silva, A.C., et al: ‘Classification of breast tissues using Moran's index and Geary's coefficient as texture signatures and SVM’, Comput. Biol. Med., 2009, 39, (12), pp. 10631072.
    31. 31)
      • 8. Cheng, H.D., Shi, X.J., Min, R., et al: ‘Approaches for automated detection and classification of masses in mammograms’, Pattern Recognit., 2006, 39, pp. 646668.
    32. 32)
      • 13. Sajeev, S., Bajger, M., Lee, G.: ‘Segmentation of breast masses in local dense background using adaptive clip limit-CLAHE’, International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, Australia, 2015.
    33. 33)
      • 2. American Cancer Society, Cancer Facts and Figures 2017. Available at https://www.cancer.org/research/cancer-facts-statistics/all-cancer-factsfigures/cancer-facts-figures-2017.html, accessed July, 2017.
    34. 34)
      • 38. Liu, L., Lao, S., Fieguth, P.W., et al: ‘Median robust extended local binary pattern for texture classification’, IEEE Trans. Image Process., 2016, 25, (3), pp. 13681381.
    35. 35)
      • 37. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), pp. 22742282.
    36. 36)
      • 12. Sajeev, S., Bajger, M., Lee, G.N.: ‘Improving breast mass segmentation in local dense background: an entropy based optimization of statistical region merging method’. Breast Imaging – 13th Int. Workshop (IWDM), Malmo, Sweden, 2016, pp. 635642.
    37. 37)
      • 23. Rabidas, R., Midya, A., Chakraborty, J.: ‘Neighborhood structural similarity mapping for the classification of masses in mammograms’, IEEE J. Biomed. Health Inform., 2017, 24, (99), pp. 18.
    38. 38)
      • 33. Chuand, J., Min, H., Liu, L., et al: ‘A novel computer aided breast mass detection scheme based on morphological enhancement and SLIC superpixel segmentation’, Med. Phys., 2015, 42, (7), pp. 38593869.
    39. 39)
      • 1. World Cancer Research Fund International’. Available at http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancerstatistics, accessed July, 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0586
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0586
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address