http://iet.metastore.ingenta.com
1887

Robust non-rigid point set registration method based on asymmetric Gaussian and structural feature

Robust non-rigid point set registration method based on asymmetric Gaussian and structural feature

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Point set registration is a fundamental problem in many domains of computer vision. In previous work on the registration, the point sets are often represented using Gaussian mixture models and the registration process is represented as a form of a probabilistic solution. For non-rigid point set registration, however, the asymmetric Gaussian (AG) model can capture spatially asymmetric distributions compared with symmetric Gaussian, and the structural feature of the point sets reserve relatively complete and has important significance in registration. In this work, the authors designed a new shape context (SC) descriptor which combines the local and global structures of the point set. Meanwhile, they proposed a non-rigid point set registration algorithm which formulates a registration process as the mixture probability density estimation of the AG mixture model, and the method introduce the structural feature by the new SC. Extensive experiments show that the proposed algorithm has a clear improvement over the state-of-the-art methods.

References

    1. 1)
      • J. Sun , N.N. Zheng , H.Y. Shum .
        1. Sun, J., Zheng, N.N., Shum, H.Y.: ‘Stereo matching using belief propagation’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 25, (7), pp. 787800.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 787 - 800
    2. 2)
      • S. Belongie , J. Malik , J. Puzicha .
        2. Belongie, S., Malik, J., Puzicha, J.: ‘Shape matching and object recognition using shape contexts’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 4170, (4), pp. 483507.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 483 - 507
    3. 3)
      • B. Zitoĺć , J. Flusser .
        3. Zitoĺć, B., Flusser, J.: ‘Image registration methods: a survey’, Image Vis. Comput., 2003, 21, (11), pp. 9771000.
        . Image Vis. Comput. , 11 , 977 - 1000
    4. 4)
      • A.W.M. Smeulders , M. Worring , S. Santini .
        4. Smeulders, A.W.M., Worring, M., Santini, S., et al: ‘Content-based image retrieval at the end of the early years’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (12), pp. 13491380.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 1349 - 1380
    5. 5)
      • A.W. Fitzgibbon .
        5. Fitzgibbon, A.W.: ‘Robust registration of 2D and 3D point sets’, Image Vis. Comput., 2002, 21, (13), pp. 11451153.
        . Image Vis. Comput. , 13 , 1145 - 1153
    6. 6)
      • A. Makadia , A.I. Patterson , K. Daniilidis .
        6. Makadia, A., Patterson, A.I., Daniilidis, K.: ‘Fully automatic registration of 3D point clouds’. 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, New York, NY, USA, 2006, pp. 12971304.
        . 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , 1297 - 1304
    7. 7)
      • P.J. Besl .
        7. Besl, P.J.: ‘A method for registration of 3-D shapes’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (3), pp. 239256.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 239 - 256
    8. 8)
      • S. Du , N. Zheng , G. Meng .
        8. Du, S., Zheng, N., Meng, G., et al: ‘Affine registration of point sets using ICP and ICA’, IEEE Signal Process. Lett., 2008, 15, (2008), pp. 689692.
        . IEEE Signal Process. Lett. , 2008 , 689 - 692
    9. 9)
      • S. Du , N. Zheng , S. Ying .
        9. Du, S., Zheng, N., Ying, S., et al: ‘Affine iterative closest point algorithm for point set registration’, Pattern Recognit. Lett., 2010, 31, (9), pp. 791799.
        . Pattern Recognit. Lett. , 9 , 791 - 799
    10. 10)
      • P.P. Zhang , S.Z. Wang , Y. Qiao .
        10. Zhang, P.P., Wang, S.Z., Qiao, Y., et al: ‘Affine SoftAssign with bidirectional distance for point matching’. IEEE Int. Conf. on Image Processing, Melbourne, Australia, 2014, pp. 12671271.
        . IEEE Int. Conf. on Image Processing , 1267 - 1271
    11. 11)
      • H. Chui , A. Rangarajan .
        11. Chui, H., Rangarajan, A.: ‘A new point matching algorithm for non-rigid registration’, Comput. Vis. Image Underst., 2003, 89, (2–3), pp. 114141.
        . Comput. Vis. Image Underst. , 114 - 141
    12. 12)
      • Y. Zheng , D. Doermann .
        12. Zheng, Y., Doermann, D.: ‘Robust point matching for nonrigid shapes by preserving local neighborhood structures’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (4), pp. 643649.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 643 - 649
    13. 13)
      • J. Ma , J. Zhao , J. Tian .
        13. Ma, J., Zhao, J., Tian, J., et al: ‘Robust estimation of nonrigid transformation for point set registration’. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 21472154.
        . Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 2147 - 2154
    14. 14)
      • B. Jian , B.C. Vemuri .
        14. Jian, B., Vemuri, B.C.: ‘Robust point set registration using Gaussian mixture models’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (8), pp. 16331645.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1633 - 1645
    15. 15)
      • A. Myronenko , X. Song .
        15. Myronenko, A., Song, X.: ‘Point set registration: coherent point drift’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 22622275.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 2262 - 2275
    16. 16)
      • J. Ma , J. Zhao , A.L. Yuille .
        16. Ma, J., Zhao, J., Yuille, A.L.: ‘Non-rigid point set registration by preserving global and local structures’, IEEE Trans. Image Process., 2015, 25, (1), pp. 5364.
        . IEEE Trans. Image Process. , 1 , 53 - 64
    17. 17)
      • G. Wang , Z. Wang , Y. Chen .
        17. Wang, G., Wang, Z., Chen, Y., et al: ‘A robust non-rigid point set registration method based on asymmetric Gaussian representation’, Comput. Vis. Image Underst., 2015, 141, (C), pp. 6780.
        . Comput. Vis. Image Underst. , 67 - 80
    18. 18)
      • T. Kato , S. Omachi , H. Aso .
        18. Kato, T., Omachi, S., Aso, H.: ‘Asymmetric Gaussian and its application to pattern recognition’. Joint IAPR Int. Workshop on Structural, Syntactic, and Statistical Pattern Recognition, London, 2002, pp. 405413.
        . Joint IAPR Int. Workshop on Structural, Syntactic, and Statistical Pattern Recognition , 405 - 413
    19. 19)
      • S. Belongie , J. Malik , J. Puzicha .
        19. Belongie, S., Malik, J., Puzicha, J.: ‘Shape context: a new descriptor for shape matching and object recognition’, 2000, pp. 831837.
        . , 831 - 837
    20. 20)
      • X. Li , T.E. Yankeelov , B.M. Dawant .
        20. Li, X., Yankeelov, T.E., Dawant, B.M.: ‘Constrained non-rigid registration for whole body image registration: method and validation’. Proc. SPIE, San Diego, CA, USA, 2007, 6512.
        . Proc. SPIE
    21. 21)
      • D. Mateus , R. Horaud , D. Knossow .
        21. Mateus, D., Horaud, R., Knossow, D., et al: ‘Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 18.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , 1 - 8
    22. 22)
      • M. Leordeanu , M. Hebert , R. Sukthankar .
        22. Leordeanu, M., Hebert, M., Sukthankar, R.: ‘An integer projected fixed point method for graph matching and MAP inference’. Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2009, pp. 11141122.
        . Int. Conf. on Neural Information Processing Systems , 1114 - 1122
    23. 23)
      • M. Cho , J. Lee , K.M. Lee .
        23. Cho, M., Lee, J., Lee, K.M.: ‘Reweighted random walks for graph matching’. European Conf. on Computer Vision, Berlin, Germany, 2010, pp. 492505.
        . European Conf. on Computer Vision , 492 - 505
    24. 24)
      • F.D.L. Torre , Z. Feng .
        24. Torre, F.D.L., Feng, Z.: ‘Factorized graph matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 38, (9), pp. 17741789.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1774 - 1789
    25. 25)
      • F. Zhou , F.D.L. Torre .
        25. Zhou, F., Torre, F.D.L.: ‘Deformable graph matching’. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013, pp. 29222929.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 2922 - 2929
    26. 26)
      • R.B. Rusu , N. Blodow , M. Beetz .
        26. Rusu, R.B., Blodow, N., Beetz, M.: ‘Fast point feature histograms (FPFH) for 3D registration’. IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, 2009, pp. 18481853.
        . IEEE Int. Conf. on Robotics and Automation , 1848 - 1853
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0550
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0550
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address