http://iet.metastore.ingenta.com
1887

Multi-segments Naïve Bayes classifier in likelihood space

Multi-segments Naïve Bayes classifier in likelihood space

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Naïve Bayes (NB) classifier has shown amazing performance in many real applications. However, the true probability distributions are usually unknown and tend to be quite complicated with high feature dimensions. Incorrect estimation models will decrease classification performance. In this study, a new method named multi-segment NB classifier is proposed to reduce errors caused by improper estimation models by implementing the classification directly in the likelihood space rather than through calculating posterior probability. The estimation of the conditional probability distribution is treated as a non-linear projection method which maps the original features into the likelihood space. Then, the mapped data is divided into some successive sub-segments and the classifier in each segment is trained by the corresponding sub-dataset, respectively. The discriminant functions are learned through a distance-measure method instead of a probability-based way and the parameters of the former classifier are used in the next training process in order to decrease the searching space. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method.

References

    1. 1)
      • H.J. Escalante , E.F. Morales , L.E. Sucar .
        1. Escalante, H.J., Morales, E.F., Sucar, L.E.: ‘A naïve Bayes baseline for early gesture recognition’, Pattern Recognit. Lett., 2016, 73, (C), pp. 9199.
        . Pattern Recognit. Lett. , 91 - 99
    2. 2)
      • Y. Ko .
        2. Ko, Y.: ‘How to use negative class information for Naive Bayes classification’, Inf. Process. Manage., 2017, 53, pp. 12551268.
        . Inf. Process. Manage. , 1255 - 1268
    3. 3)
      • M. Jones , M. Goldstein , P. Jonathan .
        3. Jones, M., Goldstein, M., Jonathan, P., et al: ‘Bayes linear analysis for Bayesian optimal experimental design’, J. Stat. Plan. Inference, 2016, 171, pp. 115129.
        . J. Stat. Plan. Inference , 115 - 129
    4. 4)
      • S. Sun , J.S. Taylor , L. Mao .
        4. Sun, S., Taylor, J.S., Mao, L.: ‘PAC-Bayes analysis of multi-view learning’, Inf. Fusion, 2017, 35, pp. 117131.
        . Inf. Fusion , 117 - 131
    5. 5)
      • X. Xie , S. Sun .
        5. Xie, X., Sun, S.: ‘PAC-Bayes bounds for twin support vector machines’, Neurocomputing, 2017, 234, pp. 137143.
        . Neurocomputing , 137 - 143
    6. 6)
      • L. Birgé .
        6. Birgé, L.: ‘About the non-asymptotic behaviour of Bayes estimators’, J. Stat. Plan. Inference, 2015, 166, pp. 6777.
        . J. Stat. Plan. Inference , 67 - 77
    7. 7)
      • M.J. Mizianty , L.A. Kurgan , M.R. Ogiela .
        7. Mizianty, M.J., Kurgan, L.A., Ogiela, M.R.: ‘Discretization as the enabling technique for the Naive Bayes and semi-Naive Bayes-based classification’, Knowl. Eng. Rev., 2010, 25, (4), pp. 421449.
        . Knowl. Eng. Rev. , 4 , 421 - 449
    8. 8)
      • P.J. Benadit , F.S. Francis , U. Muruganantham .
        8. Benadit, P.J., Francis, F.S., Muruganantham, U.: ‘Improving the performance of a proxy cache using tree augmented naive Bayes classifier’, Procedia Comput. Sci., 2015, 46, pp. 184193.
        . Procedia Comput. Sci. , 184 - 193
    9. 9)
      • L. Jiang , S. Wang , C. Li .
        9. Jiang, L., Wang, S., Li, C., et al: ‘Structure extended multinomial naive Bayes’, Inf. Sci., 2016, 329, (C), pp. 346356.
        . Inf. Sci. , 346 - 356
    10. 10)
      • C.C. Hsu , Y.P. Huang , K.W. Chang .
        10. Hsu, C.C., Huang, Y.P., Chang, K.W.: ‘Extended naïve Bayes classifier for mixed data’, Expert Syst. Appl., 2008, 35, (3), pp. 10801083.
        . Expert Syst. Appl. , 3 , 1080 - 1083
    11. 11)
      • Z. Zheng , G.I. Webb .
        11. Zheng, Z., Webb, G.I.: ‘Lazy learning of Bayesian rules’, Mach. Learn., 2000, 41, (1), pp. 5384.
        . Mach. Learn. , 1 , 53 - 84
    12. 12)
      • F. Zheng , G.I. Webb .
        12. Zheng, F., Webb, G.I.: ‘Efficient lazy elimination for averaged one-dependence estimators’. Proc. 23rd int. Conf. on Machine learning, Pittsburgh, USA, June 2006, pp. 11131120.
        . Proc. 23rd int. Conf. on Machine learning , 1113 - 1120
    13. 13)
      • J. Li , G. Fang , B. Li .
        13. Li, J., Fang, G., Li, B., et al: ‘A novel naive Bayes classifier model based on differential evolution’. Int. Conf. on Intelligent Computing, Fuzhou, China, August 2015, pp. 558566.
        . Int. Conf. on Intelligent Computing , 558 - 566
    14. 14)
      • O. Šuch , S. Barreda .
        14. Šuch, O., Barreda, S.: ‘Bayes covariant multi-class classification’, Pattern Recognit. Lett., 2016, 84, pp. 99106.
        . Pattern Recognit. Lett. , 99 - 106
    15. 15)
      • M. Borrotti , G. Minervini , D.D. Lucrezia .
        15. Borrotti, M., Minervini, G., Lucrezia, D.D., et al: ‘Naïve Bayes ant colony optimization for designing high dimensional experiments’, Appl. Soft Comput., 2016, 49, pp. 259268.
        . Appl. Soft Comput. , 259 - 268
    16. 16)
      • G.Y. Tütüncü , N. Kayaalp .
        16. Tütüncü, G.Y., Kayaalp, N.: ‘An aggregated fuzzy Naive Bayes data classifier’, J. Comput. Appl. Math., 2015, 286, pp. 1727.
        . J. Comput. Appl. Math. , 17 - 27
    17. 17)
      • Q. Dai , J. Li , J. Wang .
        17. Dai, Q., Li, J., Wang, J., et al: ‘A Bayesian hashing approach and its application to face recognition’, Neurocomputing, 2016, 213, pp. 513.
        . Neurocomputing , 5 - 13
    18. 18)
      • L. Zhang , L. Jiang , C. Li .
        18. Zhang, L., Jiang, L., Li, C., et al: ‘Two feature weighting approaches for naive Bayes text classifiers’, Knowl.-Based Syst., 2014, 100, (C), pp. 137144.
        . Knowl.-Based Syst. , 137 - 144
    19. 19)
      • T.T. Wong , C.R. Liu .
        19. Wong, T.T., Liu, C.R.: ‘An efficient parameter estimation method for generalized Dirichlet priors in naïve Bayesian classifiers with multinomial models’, Pattern Recognit., 2016, 60, pp. 6271.
        . Pattern Recognit. , 62 - 71
    20. 20)
      • L. Jiang , C. Li , S. Wang .
        20. Jiang, L., Li, C., Wang, S.: ‘Cost-sensitive Bayesian network classifiers’, Pattern Recognit. Lett., 2014, 45, (1), pp. 211216.
        . Pattern Recognit. Lett. , 1 , 211 - 216
    21. 21)
      • G.M.D. Nunzio .
        21. Nunzio, G.M.D.: ‘A new decision to take for cost-sensitive naïve Bayes classifiers’, Inf. Process. Manage., 2014, 50, (5), pp. 653674.
        . Inf. Process. Manage. , 5 , 653 - 674
    22. 22)
      • Z.X. Liu , Y.N. Zou , W.X. Xie .
        22. Liu, Z.X., Zou, Y.N., Xie, W.X., et al: ‘Multi-target Bayes filter with the target detection’, Signal Process., 2017, 140, pp. 6976.
        . Signal Process. , 69 - 76
    23. 23)
      • H. Zhang , Z.X. Cao , M. Li .
        23. Zhang, H., Cao, Z.X., Li, M., et al: ‘Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals’, Food Chem. Toxicol., 2016, 97, pp. 141149.
        . Food Chem. Toxicol. , 141 - 149
    24. 24)
      • D. Soria , J.M. Garibaldi , F. Ambrogi .
        24. Soria, D., Garibaldi, J.M., Ambrogi, F., et al: ‘A ‘non-parametric’ version of the naïve Bayes classifier’, Knowl.-Based Syst., 2011, 24, (6), pp. 775784.
        . Knowl.-Based Syst. , 6 , 775 - 784
    25. 25)
      • S. Sáez-Atienzar , J. Martínez-Gómez , J.I. Alonso-Barba .
        25. Sáez-Atienzar, S., Martínez-Gómez, J., Alonso-Barba, J.I., et al: ‘Automatic quantification of the subcellular localization of chimeric GFP protein supported by a two-level Naive Bayes classifier’, Expert Syst. Appl., 2015, 42, (3), pp. 15311537.
        . Expert Syst. Appl. , 3 , 1531 - 1537
    26. 26)
      • P. Domingos , M. Pazzani .
        26. Domingos, P., Pazzani, M.: ‘On the optimality of the simple Bayesian classifier under zero-one loss’, Mach. Learn., 1997, 29, (2–3), pp. 103130.
        . Mach. Learn. , 103 - 130
    27. 27)
      • R. Singh , B. Raj .
        27. Singh, R., Raj, B.: ‘Classification in likelihood spaces’, Technometrics, 2004, 46, (3), pp. 318329.
        . Technometrics , 3 , 318 - 329
    28. 28)
      • D. Rong , J. Wei , M. Hong .
        28. Rong, D., Wei, J., Hong, M.: ‘Semi-supervised image classification in likelihood space’. Int. Conf. on Image Processing, Atlanta, USA, October 2006, pp. 957960.
        . Int. Conf. on Image Processing , 957 - 960
    29. 29)
      • S. Yu , T. Tan , K. Huang .
        29. Yu, S., Tan, T., Huang, K., et al: ‘A study on gait-based gender classification’, IEEE Trans. Image Process., 2009, 18, (8), pp. 19051910.
        . IEEE Trans. Image Process. , 8 , 1905 - 1910
    30. 30)
      • S. Yu , D. Tan , T. Tan .
        30. Yu, S., Tan, D., Tan, T.: ‘A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition’. Int. Conf. on Pattern Recognition, Hong Kong, China, August 2006, pp. 441444.
        . Int. Conf. on Pattern Recognition , 441 - 444
    31. 31)
      • N. Mansouri , A.I. Mohammed , Y.B. Jemaa .
        31. Mansouri, N., Mohammed, A.I., Jemaa, Y.B.: ‘Gait features fusion for efficient automatic age classification’, IET Comput. Vis., 2018, 12, (1), pp. 6975.
        . IET Comput. Vis. , 1 , 69 - 75
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0546
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0546
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address