http://iet.metastore.ingenta.com
1887

CF-based optimisation for saliency detection

CF-based optimisation for saliency detection

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In view of the observation that saliency maps generated by saliency detection algorithms usually show similarity imperfection against the ground truth, the authors propose an optimisation algorithm based on clustering and fitting (CF) for saliency detection. The algorithm uses a fitting model to represent the quantitative relationship between ground truth and algorithm-generated saliency maps. The authors use the K-means method to cluster the images into k clusters according to the similarities among images. Image similarity is measured in terms of scene and colour by using the GIST and colour histogram features, after which the fitting model for each cluster is calculated. The saliency map of a new image is optimised by using one of the fitting models which correspond to the cluster to which the image belongs. Experimental results show that their CF-based optimisation algorithm improves the performance of various single image saliency detection algorithms. Moreover, the improvement achieved by their algorithm when using both CF strategies is greater than the improvement achieved by the same algorithm when not using the clustering strategy. In addition, their proposed optimisation algorithm can also effectively optimise co-saliency detection algorithms which already consider multiple similar images simultaneously to improve saliency of single images.

References

    1. 1)
      • 1. Toshev, J.S., Daniilidis, K.: ‘Image matching via saliency region correspondences’. IEEE Conf. Computer Vision and Pattern Recognition, June 2007, pp. 18.
    2. 2)
      • 2. Achanta, R., Susstrunk, S.: ‘Saliency detection for content aware image resizing’. IEEE Int. Conf. Image Processing, 2009, pp. 10051008.
    3. 3)
      • 3. Rubner, Y., Tomas, C.: ‘Perceptual metrics for image database navigation’ (Springer Science + Business Media, LLC, Boston, 2001).
    4. 4)
      • 4. Liu, T., Sun, J., Zheng, N.-N., et al: ‘Learning to detect a salient object’. IEEE Conf. Computer Vision and Pattern Recognition, June 2007, pp. 18.
    5. 5)
      • 5. Margolin, R., Tal, A., Zelnik-Manor, L.: ‘What makes a patch distinct?’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 11391146.
    6. 6)
      • 6. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. Proc. IEEE European Conf. Computer Vision, Firenze, Italy, October 2012, pp. 2942.
    7. 7)
      • 7. Kim, J., Han, D., Tai, Y., et al: ‘Salient region detection via high-dimensional color transform’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 883890.
    8. 8)
      • 8. Peng, H., Li, B., Ling, H., et al: ‘Salient object detection via structured matrix decomposition’. AAAI Conf. Artificial Intelligence, Palo Alto, USA, July 2013, pp. 114.
    9. 9)
      • 9. Yan, Q., Xu, L., Shi, J., et al: ‘Hierarchical saliency detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 11551162.
    10. 10)
      • 10. Scharfenberger, C., Wong, A., Fergani, K., et al: ‘Statistical textural distinctiveness for salient region detection in natural images’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 979986.
    11. 11)
      • 11. Tu, W., He, S., Yang, Q., et al: ‘Real-time salient object detection with a minimum spanning tree’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June 2016, pp. 2334234.
    12. 12)
      • 12. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 28142821.
    13. 13)
      • 13. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, December 2013, pp. 16651672.
    14. 14)
      • 14. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 31663173.
    15. 15)
      • 15. Qin, Y., Lu, H., Xu, Y., et al: ‘Saliency detection via cellular automata’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, June 2015, pp. 110119.
    16. 16)
      • 16. Fu, H., Cao, X., Tu, Z.: ‘Cluster-based co-saliency detection’, IEEE Trans. Image Process., 2013, 22, (10), pp. 37663778.
    17. 17)
      • 17. Joulin, A., Bach, F., Ponce, J.: ‘Discriminative clustering for image co-segmentation’. IEEE Conf. Computer Vision and Pattern Recognition, 2010, pp. 19431950.
    18. 18)
      • 18. Chang, K., Liu, T., Lai, S.: ‘From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model’. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 21292136.
    19. 19)
      • 19. Liu, Z., Zou, W., Li, L., et al: ‘Co-saliency detection based on hierarchical segmentation’, IEEE Signal Process. Lett., 2014, 21, (1), pp. 8892.
    20. 20)
      • 20. Ye, L., Liu, Z., Li, J., et al: ‘Co-saliency detection via co-salient object discovery and recovery’, IEEE Signal Process. Lett., 2015, 22, (11), pp. 20732077.
    21. 21)
      • 21. Margolin, R., Zelnik-Manor, L., Tal, A.: ‘How to evaluate foreground maps’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 248255.
    22. 22)
      • 22. Bylinskii, Z., Judd, T., Oliva, A., et al: ‘What do different evaluation metrics tell us about saliency models?’ (Arxiv, 2016).
    23. 23)
      • 23. Egiazarian, K., Astola, J., Ponomarenko, N., et al: ‘New full-reference quality metrics based on HVS’. Proc. Int. Workshop on Video Processing and Quality Metrics, Scottsdale USA, 2006.
    24. 24)
      • 24. Ponomarenko, N., Silvestri, F., Egiazarian, K., et al: ‘On between-coefficient contrast masking of DCT basis functions’. Proc. Int. Workshop on Video Processing and Quality Metrics, Scottsdale, USA, 2007, pp. 2526.
    25. 25)
      • 25. Ponomarenko, N., Eremeev, O., Lukin, V., et al: ‘Modified image visual quality metrics for contrast change and mean shift accounting’, 11th Int. Conf. The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Zakarpattya Polyana-Svalyava, Ukraine, February 2011, pp. 305311.
    26. 26)
      • 26. Larson, E.C., Chandler, D.M.: ‘Most apparent distortion: full-reference image quality assessment and the role of strategy’, J. Electron. Imaging, 2010, 19, (1), pp. 121.
    27. 27)
      • 27. Wang, Z., Simoncelli, E.P., Bovik, A.C.: ‘Multi-scale structural similarity for image quality assessment’. Proc. IEEE ACSSC, Pacific Grove, CA, November 2004, pp. 0912.
    28. 28)
      • 28. Sheikh, H.R., Bovik, A.C.: ‘Image information and visual quality’, IEEE Trans. Image Process., 2006, 15, (2), pp. 430444.
    29. 29)
      • 29. Gu, K., Liu, M., Zhai, G., et al: ‘Quality assessment considering viewing distance and image resolution. IEEE Trans. Broadcast., 2015, 61, (3), pp. 520531.
    30. 30)
      • 30. Mitsa, T., Varkur, K.L.: ‘Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in half toning algorithms’. Proc. IEEE Int. Conf. ASSP, Minneapolis, MN, April 1993, pp. 301304.
    31. 31)
      • 31. Ye, L., Liu, Z., Zhou, X., et al: ‘Saliency detection via similar image retrieval’, IEEE Signal Process. Lett., 2016, 23, (6), pp. 838842.
    32. 32)
      • 32. Oliva, A., Torralba, A.: ‘Modeling the shape of the scene: a holistic representation of the spatial envelope’, Int. J. Comput. Vis., 2001, 42, (3), pp. 145175.
    33. 33)
      • 33. Zhao, C., Liu, C., Lai, Z., et al: ‘Multi-scale GIST feature manifold for building recognition’, Neurocomputing, 2011, 74, (17), pp. 29292940.
    34. 34)
      • 34. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (11), pp. 34403451.
    35. 35)
      • 35. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, June 2009, pp. 15971604.
    36. 36)
      • 36. Cheng, M.M., Zhang, G.X., Mitra, N.J., et al: ‘Global contrast based salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 409416.
    37. 37)
      • 37. Batra, D., Kowdle, A., Parikh, D., et al: ‘iCoseg: interactive co-segmentation with intelligent scribble guidance’. IEEE Conf. Computer Vision and Pattern Recognition, June 2010, pp. 31693176.
    38. 38)
      • 38. Shotton, J., Winn, J., Rother, C., et al: ‘TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation’. Proc. ECCV, May 2006, pp. 115.
    39. 39)
      • 39. Jiang, H., Wang, J., Yuan, Z., et al: ‘Salient object detection: a discriminative regional feature integration approach’, Comput. Vis. Pattern Recognit., 2013, 123, pp. 20832090.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0512
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0512
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address