access icon free Vertex-level three-dimensional shape deformability measurement based on line segment advection

Measuring the intrinsic deformability of arbitrary small-scale subdivision of a shape is an interesting meanwhile valuable research topic. Such measurement can be directly utilised as a reliable criteria to partition shape into small components and then assist in shape modelling and description. Compared to global modelling, through constructing subdivision-based complex shape description, the accuracy and flexibility of shape representation can be significantly improved. In this study, the authors propose a line segment advection (LSA)-based vertex-level three-dimensional shape deformability measuring method. It can highlight the deformability characteristics of each shape part in any scale and size. The measurement is realised mainly based on the advection of line segments connecting neighbouring shape mesh vertices. For 3D shapes, since the line segment of triangular mesh facet directly reflects the minimal neighbourhood relationships and mesh microstructure, its advection can capture the finest details of shape deformability. Then, after transferring that information into neighbouring vertices, a vertex-level shape deformability measurement can be acquired. Besides, to demonstrate the value of the proposed measuring method to shape partitioning and piecewise shape modelling, a straightforward shape partitioning method is introduced as well. Extensive experiments on three publicly available databases are conducted to verify the effectiveness of proposed methods.

Inspec keywords: pattern clustering; computer vision; deformation; shape measurement

Other keywords: unsupervised clustering; vertex-level three-dimensional shape deformability measurement; line segment advection; 3D shapes

Subjects: Data handling techniques; Image recognition; Computer vision and image processing techniques; Spatial variables measurement; Spatial variables measurement

References

    1. 1)
      • 3. Horn, B.K.P.: ‘Extended Gaussian images’, Proc. IEEE, 1984, 72, (12), pp. 16711686.
    2. 2)
      • 5. Novotni, M., Klein, R.: ‘Shape retrieval using 3D Zernike descriptors’, Comput. Aided Des., 2004, 36, (11), pp. 10471062.
    3. 3)
      • 30. De Berg, M., Cheong, O., Van Kreveld, M., et al: ‘Computational geometry: algorithms and applications’ (Springer-Verlag, Heidelberg, 2008).
    4. 4)
      • 15. Cao, X., Wei, Y., Wen, F., et al: ‘Face alignment by explicit shape regression’, Int. J. Comput. Vis., 2014, 107, (2), pp. 177190.
    5. 5)
      • 20. Le, V., Brandt, J., Lin, Z., et al: ‘Interactive facial feature localization’. Proc. European Conf. Computer Vision, 2012, pp. 679692.
    6. 6)
      • 29. Solmaz, B., Moore, B.E., Shah, M.: ‘Identifying behaviors in crowd scenes using stability analysis for dynamical systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (10), pp. 20642070.
    7. 7)
      • 16. Gollmer, S.T., Kirschner, M., Buzug, T.M., et al: ‘Using image segmentation for evaluating 3D statistical shape models built with groupwise correspondence optimization’, Comput. Vis. Image Underst., 2014, 125, pp. 283303.
    8. 8)
      • 33. Papadakis, P.: ‘The canonically posed 3D objects dataset’. Proc. Eurographics Workshop on 3D Object Retrieval, 2014, pp. 3336.
    9. 9)
      • 21. Martins, P., Caseiro, R., Henriques, J., et al: ‘Discriminative Bayesian active shape models’. Proc. European Conf. Computer Vision, 2012, pp. 5770.
    10. 10)
      • 7. Hilaga, M., Shinagawa, Y., Kohmura, T., et al: ‘Topology matching for fully automatic similarity estimation of 3D shapes’. Proc. 28th Annual Conf. Computer Graphics and Interactive Techniques, 2001, pp. 203212.
    11. 11)
      • 8. Tung, T., Schmitt, F.: ‘Augmented Reeb graphs for content-based retrieval of 3D mesh models’. Proc. Shape Modeling Applications, 2004, pp. 157166.
    12. 12)
      • 28. Ali, S., Shah, M.: ‘A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp. 16.
    13. 13)
      • 1. Szeliski, R.: ‘Computer vision: algorithms and applications’ (Springer-Verlag, London, 2010).
    14. 14)
      • 27. Nam, Y., Hong, S.: ‘Real-time abnormal situation detection based on particle advection in crowded scenes’, J. Real-Time Image Process., 2015, 10, (4), pp. 771784.
    15. 15)
      • 17. Baltrušaitis, T., Robinson, P., Morency, L.-P.: ‘3D constrained local model for rigid and non-rigid facial tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 26102617.
    16. 16)
      • 4. Osada, R., Funkhouser, T., Chazelle, B., et al: ‘Matching 3D models with shape distributions’. Proc. Int. Conf. Shape Modeling and Applications, 2001, pp. 154166.
    17. 17)
      • 31. MacQueen, J.: ‘Some methods for classification and analysis of multivariate observations’, Proc. Berkeley Symp. Mathematical Statistics and Probability, 1967, vol. 1, pp. 281297.
    18. 18)
      • 24. Jolliffe, I.: ‘Principal component analysis’ (Springer-Verlag, New York, 2002).
    19. 19)
      • 10. Kazhdan, M., Chazelle, B., Dobkin, D., et al: ‘A reflective symmetry descriptor for 3D models’, Algorithmica, 2004, 38, (1), pp. 201225.
    20. 20)
      • 34. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: ‘Numerical geometry of non-rigid shapes’ (Springer Science, New York City, NY, 2008).
    21. 21)
      • 32. Bogo, F., Romero, J., Loper, M., et al: ‘FAUST: dataset and evaluation for 3D mesh registration’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014.
    22. 22)
      • 2. Frejlichowski, D.: ‘Three-dimensional object representation based on 2D UNL-Fourier shape descriptor’. Int. Conf. Image Analysis and Recognition, 2013, pp. 389396.
    23. 23)
      • 22. Tresadern, P., Sauer, P., Cootes, T.: ‘Additive update predictors in active appearance models’. Proc. British Machine Vision Conf., 2010, pp. 91.191.12.
    24. 24)
      • 9. Sundar, H., Silver, D., Gagvani, N., et al: ‘Skeleton based shape matching and retrieval’. Proc. Shape Modeling Int., 2003, pp. 130139.
    25. 25)
      • 13. Chua, C.S., Jarvis, R.: ‘Point signatures: a new representation for 3D object recognition’, Int. J. Comput. Vis., 1997, 25, (1), pp. 6385.
    26. 26)
      • 6. Frejlichowski, D.: ‘A three-dimensional shape description algorithm based on polar-Fourier transform for 3D model retrieval’, Proc. Scandinavian Conference on Image Analysis, Ystad Saltsjöbad, Sweden, 2011, pp. 457466.
    27. 27)
      • 18. Li, Y., Wang, S., Zhao, Y., et al: ‘Simultaneous facial feature tracking and facial expression recognition’, IEEE Trans. Image Process., 2013, 22, (7), pp. 25592573.
    28. 28)
      • 26. Liang, L., Xiao, R., Wen, F., et al: ‘Face alignment via component-based discriminative search’. Proc. European Conf. Computer Vision, 2008, pp. 7285.
    29. 29)
      • 23. Gao, H., Ekenel, H.K., Fischer, M., et al: ‘Boosting pseudo census transform features for face alignment’. Proc. British Machine Vision Conf., 2011, pp. 54.154.11.
    30. 30)
      • 11. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: ‘Symmetry descriptors and 3D shape matching’. Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, 2004, pp. 115123.
    31. 31)
      • 25. Tong, Y., Wang, Y., Zhu, Z., et al: ‘Robust facial feature tracking under varying face pose and facial expression’, Pattern Recognit., 2007, 40, (11), pp. 31953208.
    32. 32)
      • 14. Tzimiropoulos, G.: ‘Project-out cascaded regression with an application to face alignment’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 36593667.
    33. 33)
      • 19. Saragih, J.M., Lucey, S., Cohn, J.F.: ‘Deformable model fitting by regularized landmark mean-shift’, Int. J. Comput. Vis., 2011, 91, (2), pp. 200215.
    34. 34)
      • 12. Johnson, A.: ‘Surface landmark selection and matching in natural terrain’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000, vol. 2, pp. 413420.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0500
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0500
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading