Tucker tensor decomposition-based tracking and Gaussian mixture model for anomaly localisation and detection in surveillance videos

Tucker tensor decomposition-based tracking and Gaussian mixture model for anomaly localisation and detection in surveillance videos

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The anomaly detection and localisation (ADL) gains remarkable interest as dealing with the complex surveillance videos for detecting the abnormal behaviour is tedious. The human effort in monitoring and classifying the abnormal object is inaccurate and time-consuming; therefore, the method is proposed using the Tucker tensor decomposition (TTD) and classification of the objects using Gaussian mixture model (GMM). Initially, the object is detected in the frames for easy recognition using simple background subtraction. The TTD decomposes the tensor as core tensor and factor matrices and the two decomposed tensors are compared using the cosine similarity measure that determines the location of the object in the frame. Finally, the features including shape and speed of the object are extracted that is used for classification using the GMM that follows the maximum posterior probability principle to detect and locate the anomaly in the video. The experimentation for anomaly detection proves that the proposed TTD and TTD-GMM method attains a higher rate of multiple object tracking precision, accuracy, sensitivity, and specificity at 0.96375, 0.975, 1, and 1, respectively.


    1. 1)
      • 1. Sabokrou, M., Fayyaz, M., Fathy, M., et al: ‘Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes’, IEEE Trans. Image Process., 2017, 26, (4), pp. 19922004.
    2. 2)
      • 2. Wyatt, D.: ‘Collective modeling of human social behaviorAAAI Spring Symp.: Human BehaviorModeling, Palo Alto, CA, USA, 2009.
    3. 3)
      • 3. Li, C.T., Lin, S.D.: ‘Social flocks: a crowd simulation framework for social network generation, community detection, and collective behaviour modelling’. Proc. 17th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Diego, CA, USA, August 2011, pp. 765768.
    4. 4)
      • 4. Biswas, S., Gupta, V.: ‘Abnormality detection in crowd videos by tracking sparse components’, Mach. Vis. Appl., 2017, 28, (1, 2), pp. 3548.
    5. 5)
      • 5. Chaker, R., Aghbari, Z.A., Junejo, I.N.: ‘Social network model for crowd anomaly detection and localization’, Pattern Recognit., 2017, 61, pp. 266281.
    6. 6)
      • 6. Narasimhan, M.G., Kamath, S.S.: ‘Dynamic video anomaly detection and localization using sparse denoisingautoencoders’. Multimedia Tools Appl., 2017, pp. 123.
    7. 7)
      • 7. Cheng, K.W., Chen, Y.T., Fang, W.H.: ‘Gaussian process regression-based video anomaly detection and localization with hierarchical feature representation’, IEEE Trans. Image Process., 2015, 24, (12), pp. 52885301.
    8. 8)
      • 8. Cong, Y., Yuan, J., Liu, J.: ‘Sparse reconstruction cost for abnormal event detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, June 2011, pp. 34493456.
    9. 9)
      • 9. Kim, J., Grauman, K.: ‘Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, June 2009, pp. 29212928.
    10. 10)
      • 10. Wu, S., Moore, B.E., Shah, M.: ‘Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, USA, June 2010, pp. 20542060.
    11. 11)
      • 11. Sun, X., Yao, H., Ji, R., et al: ‘Unsupervised fast anomaly detection in crowds’. Proc. ACM Int. Conf. Multimedia, Scottsdale, AZ, USA, December 2011, pp. 14691472.
    12. 12)
      • 12. Li, W., Mahadevan, V., Vasconcelos, N.: ‘Anomaly detection and localization in crowded scenes’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (1), pp. 1832.
    13. 13)
      • 13. Mahadevan, V., Li, W., Bhalodia, V., et al: ‘Anomaly detection in crowded scenes’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 19751981.
    14. 14)
      • 14. Zhu, X., Liu, J., Wang, J., et al: ‘Sparse representation for robust abnormality detection in crowded scenes’, Pattern Recognit., 2014, 47, (5), pp. 17911799.
    15. 15)
      • 15. Cong, Y., Yuan, J., Liu, J.: ‘Abnormal event detection in crowded scenes using sparse representation’, Pattern Recognit., 2013, 46, (7), pp. 18511864.
    16. 16)
      • 16. Raghavendra, R., Bue, A.D., Cristani, M., et al: ‘Optimizing interaction force for global anomaly detection in crowded scenes’. Proc. IEEE Conf. Computer Vision Workshops, Barcelona, Spain, November 2011, pp. 136143.
    17. 17)
      • 17. Li, H., Achim, A., Bull, D.: ‘Unsupervised video anomaly detection using feature clustering’, IET Signal Process., 2012, 6, (5), pp. 521533.
    18. 18)
      • 18. Zhu, X., Jin, X., Zhang, X.Y., et al: ‘Context-aware local abnormality detection in crowded scene’, Sci. China Inf. Sci., 2015, 58, (5), pp. 111.
    19. 19)
      • 19. Ye, R., Li, X.: ‘Collective representation for abnormal event detection’, J. Comput. Sci. Technol., 2017, 32, (3), pp. 470479.
    20. 20)
      • 20. Yuan, Y., Wang, D., Wang, Q.: ‘Anomaly detection in traffic scenes via spatial-aware motion reconstruction’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 11981209.
    21. 21)
      • 21. Zhou, S., Shen, W., Zeng, D., et al: ‘Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes’, Signal Process., Image Commun., 2016, 47, pp. 358368.
    22. 22)
      • 22. Lu, C., Shi, J., Jia, J.: ‘Abnormal event detection at 150 FPS in MATLAB’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013, pp. 27202727.
    23. 23)
      • 23. Chockalingam, T., Emonet, R., Odobez, J.M.: ‘Localized anomaly detection via hierarchical integrated activity discovery’. Proc. 10th IEEE Int. Conf. Advanced Video and Signal Based Surveillance, Krakow, Poland, 2013, pp. 5156.
    24. 24)
      • 24. Jouneau, E., Carincotte, C.: ‘Particle-based tracking model for automatic anomaly detection’. Proc. 18th IEEE Int. Conf. Image Processing, Brussels, Belgium, 2011, pp. 513516.
    25. 25)
      • 25. Kong, X., Wang, Y., Xiang, T.: ‘Robust complex behaviour modeling at 90 Hz’. Proc. Thirtieth AAAI Conf. Artificial Intelligence, Phoenix, AZ, USA, 2016, pp. 35163522.
    26. 26)
      • 26. Xu, Y., Yin, W.: ‘A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion’, SIAM J. Imaging Sci., 2013, 6, (3), pp. 17581789.
    27. 27)
      • 27. Zoidi, O., Tefas, A., Pitas, I.: ‘Visual object tracking based on local steering Kernels and color histograms’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (5), pp. 870882.
    28. 28)
      • 28. Wang, D., Lu, H., Bo, C.: ‘Visual tracking via weighted local cosine similarity’, IEEE Trans. Cybern., 2015, 45, (9), p. 18381850.
    29. 29)
      • 29. Maligo, A., Lacroix, S.: ‘Classification of outdoor 3D lidar data based on unsupervised Gaussian mixture models’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (1), pp. 516.
    30. 30)
      • 30. Dataset. Available at, accessed September 2017.
    31. 31)
      • 31. Adam, A., Rivlin, E., Shimshoni, I., et al: ‘Robust real-time unusual event detection using multiple fixed-location monitors’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (3), pp. 555560.
    32. 32)
      • 32. Loy, C.C., Xiang, T., Gong, S.: ‘Modelling multi-object activity by Gaussian processes’. Proc. British Machine Vision Conf., London, UK, 2009, pp. 111.
    33. 33)
      • 33. Hu, X., Hu, S., Huang, Y., et al: ‘Video anomaly detection using deep incremental slow feature analysis network’, IET Comput. Vis., 2016, 10, (4), pp. 258265.
    34. 34)
      • 34. Giovanis, E.: ‘Application of logit model and self-organizing maps (SOMs) for the prediction of financial crisis periods in US economy’, J. Financ. Econ. Policy, 2010, 2, (2), pp. 98125.

Related content

This is a required field
Please enter a valid email address