http://iet.metastore.ingenta.com
1887

Multi-bit quantisation for similarity-preserving hashing

Multi-bit quantisation for similarity-preserving hashing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a promising alternative to traditional search techniques, hashing-based approximate nearest neighbour search provides an applicable solution for big data. Most existing efforts are devoted to finding better projections to preserve the neighbouring structure of original data points in Hamming space, but ignore the quantisation procedure which may lead to the breakdown of the neighbouring structure maintained in the projection stage. To address this issue, the authors propose a novel multi-bit quantisation (MBQ) method using a Matthews correlation coefficient (MCC) term and a regularisation term. The authors' method utilises the neighbouring relationship and the distribution information of original data points instead of the projection dimension usually used in the previous MBQ methods to adaptively learn optimal quantisation thresholds, and allocates multiple bits per projection dimension in terms of the learned thresholds. Experiments on two typical image data sets demonstrate that the proposed method effectively preserves the similarity between data points in the original feature space and outperforms state-of-the-art quantisation methods.

References

    1. 1)
      • 1. Andoni, A., Indyk, P.: ‘Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions’. IEEE Symp. on Foundations of Computer Science, 2006, vol. 51, issue 1, pp. 117122.
    2. 2)
      • 2. Shakhnarovich, G., Viola, P., Darrell, T.: ‘Fast pose estimation with parameter-sensitive hashing’. IEEE Int. Conf. Computer Vision, Nice, France, October 2003, pp. 750757.
    3. 3)
      • 3. Raginsky, M., Lazebnik, S.: ‘Locality-sensitive binary codes from shift-invariant kernels’. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 2009, pp. 15091517.
    4. 4)
      • 4. Weiss, Y., Torralba, A., Fergus, R.: ‘Spectral hashing’. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 2008, pp. 17531760.
    5. 5)
      • 5. Wang, J., Kumar, S., Chang, S., et al: ‘Semi-supervised hashing for large-scale search’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (12), pp. 23932406.
    6. 6)
      • 6. Gong, Y., Lazebnik, S.: ‘Iterative quantization: a procrustean approach to learning binary codes’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, June 2011, pp. 817824.
    7. 7)
      • 7. Song, J., Yang, Y., Li, X., et al: ‘Robust hashing with local models for approximate similarity search’, IEEE Trans. Cybern., 2014, 44, (7), p. 1225.
    8. 8)
      • 8. Song, J., Yang, Y., Huang, Z., et al: ‘Effective multiple feature hashing for large-scale near-duplicate video retrieval’, IEEE Trans. Multimedia, 2013, 15, (8), pp. 19972008.
    9. 9)
      • 9. Strecha, C., Bronstein, A.M., Bronstein, M.M., et al: ‘LDAHash: improved matching with smaller descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (1), pp. 6678.
    10. 10)
      • 10. Norouzi, M., Fleet, D.J.: ‘Minimal loss hashing for compact binary codes’. Proc. Int. Conf. Machine Learning, Bellevue, Washington, USA, June 2011, pp. 353360.
    11. 11)
      • 11. Chang, S.F.: ‘Supervised hashing with kernels’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, June 2012, pp. 20742081.
    12. 12)
      • 12. Liu, L., Yu, M., Shao, L.: ‘Latent structure preserving hashing’, Int. J. Comput. Vision, 2017, 122, (3), pp. 439457.
    13. 13)
      • 13. Shen, F., Shen, C., Liu, W., et al: ‘Supervised discrete hashing’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, June 2015, pp. 3745.
    14. 14)
      • 14. Zhang, P., Zhang, W., Li, W., et al: ‘Supervised hashing with latent factor models’. Proc. ACM SIGIR Int. Conf. Research and Development in Information Retrieval, Gold Coast, QLD, Australia, July 2014, pp. 173182.
    15. 15)
      • 15. Gao, L., Song, J., Zou, F., et al: ‘Scalable multimedia retrieval by deep learning hashing with relative similarity learning’. Proc. ACM Int. Conf. Multimedia, Brisbane, Australia, October 2015, pp. 903906.
    16. 16)
      • 16. Song, J., He, T., Gao, L., et al: ‘Deep region hashing for efficient large-scale instance search from images’, 2017.
    17. 17)
      • 17. Zhang, H., Wang, M., Hong, R., et al: ‘Play and rewind: optimizing binary representations of videos by self-supervised temporal hashing’. Proc. ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, October 2016, pp. 781790.
    18. 18)
      • 18. Masci, J., Bronstein, A.M., Bronstein, M.M., et al: ‘Sparse similarity-preserving hashing’. Proc. Int. Conf. Learning Representations, 2014.
    19. 19)
      • 19. Liu, L., Yu, M., Shao, L., et al: ‘Projection bank: from high-dimensional data to medium-length binary codes’. Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, December 2015, pp. 28212829.
    20. 20)
      • 20. Liu, L., Yu, M., Shao, L.: ‘Learning short binary codes for large-scale image retrieval’, IEEE Trans. Image Process., 2017, 26, (3), pp. 12891299.
    21. 21)
      • 21. Liu, L., Shao, L.: ‘Sequential compact code learning for unsupervised image hashing’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (12), pp. 25262536.
    22. 22)
      • 22. Song, J., Gao, L., Liu, L., et al: ‘Quantization-based hashing: a general framework for scalable image and video retrieval’, Pattern Recognit., 2017.
    23. 23)
      • 23. Wang, J., Zhang, T., Song, J., et al: ‘A survey on learning to hash’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, pp. 11.
    24. 24)
      • 24. Kong, W., Li, W.J.: ‘Double-bit quantization for hashing’. Proc. 26th AAAI Conf. Artificial Intelligence, 2012, pp. 634640.
    25. 25)
      • 25. Kong, W.H., Li, W.J., Guo, M.Y.: ‘Manhattan hashing for large-scale image retrieval’. Proc. ACM SIGIR Int. Conf. Research & Development in Information Retrieval, Portland, OR, USA, August 2012, pp. 4554.
    26. 26)
      • 26. Moran, S., Lavrenko, V., Osborne, M., et al: ‘Neighbourhood preserving quantisation for LSH’. Proc. ACM SIGIR Int. Conf. Research & Development in Information Retrieval, Dubin, Ireland, July 2013, pp. 10091012.
    27. 27)
      • 27. Liu, W., Wang, J., Kumar, S., et al: ‘Hashing with graphs’. Proc. Int. Conf. Machine Learning, Bellevue, Washington, USA, June 2011, pp. 18.
    28. 28)
      • 28. Deng, C., Deng, H., Liu, X., et al: ‘Adaptive multi-bit quantization for hashing’, Neurocomputing, 2015, 151, pp. 319326.
    29. 29)
      • 29. Xiong, C., Chen, W., Chen, G., et al: ‘Adaptive quantization for hashing: an information-based approach to learning binary codes’. Proc. SIAM Int. Conf. Data Mining, 2014, pp. 172180.
    30. 30)
      • 30. Moran, S., Lavrenko, V., Osborne, M., et al: ‘Variable bit quantisation for LSH’. Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, August 2013, pp. 753758.
    31. 31)
      • 31. Matthews, B.W.: ‘Comparison of the predicted and observed secondary structure of T4 phage lysozyme’, Biochim. Biophys. Acta, 1975, 405, (2), pp. 442451.
    32. 32)
      • 32. Powers, D.M.W.: ‘Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation’, J. Mach. Learn. Technol., 2011, 2, (1), pp. 3763.
    33. 33)
      • 33. Boughorbel, S., Jarray, F., El-Anbari, M.: ‘Optimal classifier for imbalanced data using Matthews correlation coefficient metric’, Plos One, 2017, 12, (6), p. e0177678.
    34. 34)
      • 34. Krizhevsky, A.: ‘Learning multiple layers of features from tiny images’. Technical Report, University of Toronto, 2009.
    35. 35)
      • 35. Lecun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0465
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address