http://iet.metastore.ingenta.com
1887

Joint attribute chain prediction for zero-shot learning

Joint attribute chain prediction for zero-shot learning

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Zero-shot learning (ZSL) aims to classify the objects without any training samples. Attributes are used to transfer knowledge from the training set to testing one in ZSL. Most ZSL methods based on Direct Attribute Prediction (DAP) assume that attributes are independent of each other. In this study, the authors explore the relationship between attributes and propose Joint Attribute Chain Prediction (JACP). Attribute chains are introduced to represent the relations. Conditional probabilities of attributes are estimated orderly along the chain to calculate the joint posteriors of the testing classes without independence assumptions. To reduce the estimation error, attribute relation clustering algorithm is presented to group the long chain into some unrelated small chains. When the max length of chains is one, JACP is essentially identical with DAP. Experiments on three data sets for zero-shot problem demonstrate the classification accuracy and efficiency of the authors’ algorithm. The results show that mining attribute relations can greatly improve the performance of ZSL effectively.

References

    1. 1)
      • 1. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vision, 2004, 60, (2), pp. 91110.
    2. 2)
      • 2. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 886893.
    3. 3)
      • 3. Jing, Z., Qiao, L., Pan, H., et al: ‘An overview of the configuration and manipulation of soft robotics for on-orbit servicing’, SCIENCE CHINA Inf. Sci., 2017, 60, (5), 050201.
    4. 4)
      • 4. Zhang, W., Sun, F., Wu, H., et al: ‘A framework for the fusion of visual and tactile modalities for improving robot perception’, SCIENCE CHINA Inf. Sci., 2017, 60, (1), 012201.
    5. 5)
      • 5. Lampert, C.H., Nickisch, H., Harmeling, S.: ‘Attribute-based classification for zero-shot visual object categorization’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (3), pp. 453465.
    6. 6)
      • 6. Wang, Y., Mori, G.: ‘A discriminative latent model of object classes and attributes’. Proc. European Conf. on Computer Vision, Hersonissos, Greece, September 2010, pp. 155168.
    7. 7)
      • 7. Liu, M., Zhang, D., Chen, S.: ‘Attribute relation learning for zero-shot classification’, Neurocomputing, 2014, 139, pp. 3446.
    8. 8)
      • 8. Wang, X., Ji, Q.: ‘A unified probabilistic approach modeling relationships between attributes and objects’. Proc. the IEEE Int. Conf. on Computer Vision, Sydney, Australia, December 2013, pp. 21202127.
    9. 9)
      • 9. Cheng, W., Hüllermeier, E., Dembczynski, K.J.: ‘Bayes optimal multilabel classification via probabilistic classifier chains’. Proc. the 27th int. Conf. on Machine Learning, Haifa, Israel, June 2010, pp. 279286.
    10. 10)
      • 10. Lampert, C.H., Nickisch, H., Harmeling, S.: ‘Learning to detect unseen object classes by between-class attribute transfer’. Proc. Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 951958.
    11. 11)
      • 11. Huang, S., Elhoseiny, M., Elgammal, A., et al: ‘Learning hypergraph-regularized attribute predictors’. Proc. Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 409417.
    12. 12)
      • 12. Kankuekul, P., Kawewong, A., Tangruamsub, S., et al: ‘Online incremental attribute-based zero-shot learning’. Proc. Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 36573664.
    13. 13)
      • 13. Suzuki, M., Sato, H., Oyama, S., et al: ‘Image classification by transfer learning based on the predictive ability of each attribute’. Proc. the Int. MultiConf. of Engineers and Computer Scientists, Hong Kong, China, March 2014, vol. 1.
    14. 14)
      • 14. Jayaraman, D., Grauman, K.: ‘Zero-shot recognition with unreliable attributes’. Proc. NIPS, Montreal, Canada, December 2014, pp. 34643472.
    15. 15)
      • 15. Li, H., Li, D., Luo, X.: ‘Bap: bimodal attribute prediction for zero-shot image categorization’. Proc. the 22nd ACM Int. Conf. on Multimedia, Orlando, USA, November 2014, pp. 10131016.
    16. 16)
      • 16. Akata, Z., Perronnin, F., Harchaoui, Z., et al: ‘Label-embedding for attribute-based classification’. Proc. Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 819826.
    17. 17)
      • 17. Fu, Y., Hospedales, T.M., Xiang, T., et al: ‘Transductive multi-view embedding for zero-shot recognition and annotation’. Proc. European Conf. on Computer Vision, ZÃijrich, Switzerland, September 2014, pp. 584599.
    18. 18)
      • 18. Fu, Z., Xiang, T., Kodirov, E., et al: ‘Zero-shot object recognition by semantic manifold distance’. Proc. Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 26352644.
    19. 19)
      • 19. Zhang, Z., Saligrama, V.: ‘Zero-shot learning via semantic similarity embedding’. Proc. Int. Conf. on Computer Vision, Santiago, Chile, December 2015, pp. 41664174.
    20. 20)
      • 20. Frome, A., Corrado, G.S., Shlens, J., et al: ‘Devise: A deep visual-semantic embedding model’. Proc. NIPS, Lake Tahoe, USA, December 2013, pp. 21212129.
    21. 21)
      • 21. Socher, R., Ganjoo, M., Manning, C.D., et al: ‘Zero-shot learning through cross-modal transfer’. Proc. NIPS, Lake Tahoe, USA, December 2013, pp. 935943.
    22. 22)
      • 22. Zhang, Z., Saligrama, V.: ‘Zero-shot learning via joint latent similarity embedding’. Proc. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 60346042.
    23. 23)
      • 23. Kodirov, E., Xiang, T., Fu, Z., et al: ‘Unsupervised domain adaptation for zero-shot learning’. Proc. Int. Conf. on Computer Vision, Santiago, Chile, December 2015, pp. 24522460.
    24. 24)
      • 24. Fu, Y., Hospedales, T.M., Xiang, T., et al: ‘Transudative multi-view zero-shot learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (11), pp. 23322345.
    25. 25)
      • 25. Zhang, Z., Saligrama, V.: ‘Zero-shot recognition via structured prediction’. Proc. European Conf. on Computer Vision, Amsterdam, The Netherlands, October 2016, pp. 533548.
    26. 26)
      • 26. Godbole, S., Sarawagi, S.: ‘Discriminative methods for multi-labeled classification’, Pacific-Asia Conf. on Knowledge Discovery and Data Mining, May 2004, pp. 2230.
    27. 27)
      • 27. Schapire, R.E., Singer, Y.: ‘Boostexter: a boosting-based system for text categorization’, Mach. Learn., 2000, 39, (2-3), pp. 135168.
    28. 28)
      • 28. Elisseeff, A., Weston, J.: ‘A kernel method for multi-labelled classification’. Proc. NIPS, Vancouver, Canada, December 2002, pp. 681687.
    29. 29)
      • 29. Zhang, M.L., Zhou, Z.H.: ‘ML-KNN: A lazy learning approach to multi-label learning’, Pattern Recognit., 2007, 40, (7), pp. 20382048.
    30. 30)
      • 30. Tsoumakas, G., Katakis, I., Vlahavas, I.: ‘Random k-label sets for multilabel classification’, IEEE Trans. Knowl. Data Eng., 2011, 23, (7), pp. 10791089.
    31. 31)
      • 31. Zaragoza, J.H., Sucar, L.E., Morales, E.F., et al: ‘Bayesian chain classifiers for multidimensional classification’. Proc. IJCAI, Barcelona, Spain, July 2011, vol. 11, pp. 21922197.
    32. 32)
      • 32. Bielza, C., Li, G., Larranaga, P.: ‘Multi-dimensional classification with Bayesian networks’, Int. J. Approx. Reason., 2011, 52, (6), pp. 705727.
    33. 33)
      • 33. Dembszynski, K., Waegeman, W., Cheng, W., et al: ‘On label dependence in multilabel classification’. ICML Workshop, Haifa, Israel, June 2010.
    34. 34)
      • 34. Platt, J.: ‘Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods’, Advances Large Margin Classifiers, 1999, 10, (3), pp. 6174.
    35. 35)
      • 35. Farhadi, A., Endres, I., Hoiem, D., et al: ‘Describing objects by their attributes’. Proc. Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 17781785.
    36. 36)
      • 36. Patterson, G., Xu, C., Su, H., et al: ‘The sun attribute database: beyond categories for deeper scene understanding’, Int. J. Comput. Vis., 2014, 108, (1-2), pp. 5981.
    37. 37)
      • 37. Qiao, L., Tuo, H., Fang, Z., et al: ‘Joint probability estimation of attribute chain for zero-shot learning’. Proc. ICIP, Phoenix, USA, September 2016, pp. 18631867.
    38. 38)
      • 38. Lai, Z., Xu, Y., Chen, Q., et al: ‘Multilinear sparse principal component analysis’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 19421950.
    39. 39)
      • 39. Lai, Z., Mo, D., Wong, W.K., et al: ‘Robust discriminant regression for feature extraction’, IEEE Trans. Cybern., 2017, in press.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0438
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address