http://iet.metastore.ingenta.com
1887

Detecting heel strikes for gait analysis through acceleration flow

Detecting heel strikes for gait analysis through acceleration flow

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In some forms of gait analysis, it is important to be able to capture when the heel strikes occur. In addition, in terms of video analysis of gait, it is important to be able to localise the heel where it strikes on the floor. In this study, a new motion descriptor, acceleration flow, is introduced for detecting heel strikes. The key frame of heel strike can be determined by the quantity of acceleration flow within the region of interest, and positions of the strike can be found from the centre of rotation caused by radial acceleration. Our approach has been tested on a number of databases which were recorded indoors and outdoors with multiple views and walking directions for evaluating the detection rate under various environments. Experiments show the ability of our approach for both temporal detection and spatial positioning. The immunity of this new approach to three anticipated types of noises in real CCTV footage is also evaluated in our experiments. The authors acceleration flow detector is shown to be less sensitive to Gaussian white noise, whilst being effective with images of low-resolution and with incomplete body position information when compared with other techniques.

References

    1. 1)
      • 1. Nixon, M.S., Tan, T., Chellappa, R.: ‘Human identification based on gait’ (Springer, 2005).
    2. 2)
      • 2. Whittle, M.W.: ‘Normal ranges for gait parameters’, in Whittle, M. W (Ed): ‘Gait analysis: an introduction’ (Elsevier, London, 2007, 4th edn.).
    3. 3)
      • 3. Skelly, M.M., Chizeck, H.J.: ‘Real-time gait event detection for paraplegic FES walking’, IEEE Trans. Neural Syst. Rehabil. Eng., 2001, 9, (1), pp. 5968.
    4. 4)
      • 4. Chau, T., Rizvi, S.: ‘Automatic stride interval extraction from long, highly variable and noisy gait timing signals’, Hum. Mov. Sci., 2002, 21, (4), pp. 495514.
    5. 5)
      • 5. Shull, P.B., Jirattigalachote, W., Hunt, M.A., et al: ‘Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention’, Gait Posture, 2014, 40, (1), pp. 1119.
    6. 6)
      • 6. Djurić-Jovičić, M.D., Jovičić, N.S., Popović, D.B.: ‘Kinematics of gait: new method for angle estimation based on accelerometers’, Sensors, 2011, 11, (11), pp. 1057110585.
    7. 7)
      • 7. Rueterbories, J., Spaich, E.G., Larsen, B., et al: ‘Methods for gait event detection and analysis in ambulatory systems’, Med. Eng. Phys., 2010, 32, (6), pp. 545552.
    8. 8)
      • 8. O'Connor, C.M., Thorpe, S.K., O'Malley, M.J., et al: ‘Automatic detection of gait events using kinematic data’, Gait Posture, 2007, 25, (3), pp. 469474.
    9. 9)
      • 9. Auvinet, E., Multon, F., Aubin, C.E., et al: ‘Detection of gait cycles in treadmill walking using a kinect’, Gait Posture, 2015, 41, (2), pp. 722725.
    10. 10)
      • 10. Lu, J., Wang, G., Moulin, P.: ‘Human identity and gender recognition from gait sequences with arbitrary walking directions’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (1), pp. 5161.
    11. 11)
      • 11. Wang, J., She, M., Nahavandi, S., et al: ‘A review of vision-based gait recognition methods for human identification’. Int. Conf. on Digital Image Computing: Techniques and Applications, Sydney, Australia, 2010, pp. 320327.
    12. 12)
      • 12. Yam, C., Nixon, M., Carter, J.: ‘Gait recognition by walking and running: a model-based approach’. Asian Conf. on Computer Vision, Melbourne, Australia, January 2002, pp. 16.
    13. 13)
      • 13. Wang, L., Tan, T., Hu, W., et al: ‘Automatic gait recognition based on statistical shape analysis’, IEEE Trans. Image Process., 2003, 12, (9), pp. 11201131.
    14. 14)
      • 14. Bobick, A.F., Davis, J.W.: ‘The recognition of human movement using temporal templates’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (3), pp. 257267.
    15. 15)
      • 15. Han, J., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (2), pp. 316322.
    16. 16)
      • 16. Komura, T., Nagano, A., Leung, H., et al: ‘Simulating pathological gait using the enhanced linear inverted pendulum model’, IEEE Trans. Biomed. Eng., 2005, 52, (9), pp. 15021513.
    17. 17)
      • 17. Zeni, J.A., Richards, J.G., Higginson, J.S.: ‘Two simple methods for determining gait events during treadmill and overground walking using kinematic data’, Gait Posture, 2008, 27, (4), pp. 710714.
    18. 18)
      • 18. Hreljac, A., Marshall, R.N.: ‘Algorithms to determine event timing during normal walking using kinematic data’, J. Biomech., 2000, 33, (6), pp. 783786.
    19. 19)
      • 19. Pappas, I.P.I., Popovic, M.R., Keller, T., et al: ‘A reliable gait phase detection system’, IEEE Trans. Neural Syst. Rehabil. Eng., 2001, 9, (2), pp. 113125.
    20. 20)
      • 20. Bamberg, S., Benbasat, A.Y., Scarborough, D.M., et al: ‘Gait analysis using a shoe-integrated wireless sensor system’, IEEE Trans. Inf. Technol. Biomed., 2008, 12, (4), pp. 413423.
    21. 21)
      • 21. Bouchrika, I., Nixon, M.S.: ‘Model-based feature extraction for gait analysis and recognition’, in Gagalowicz, A., Philips, W. (Eds.): ‘‘Computer Vision/Computer Graphics Collaboration Techniques’ (Springer, Berlin, 2007), pp. 150160.
    22. 22)
      • 22. Jung, S.U., Nixon, M.S.: ‘Heel strike detection based on human walking movement for surveillance analysis’, Pattern Recognit. Lett., 2013, 34, (8), pp. 895902.
    23. 23)
      • 23. Sun, Y., Hare, J.S., Nixon, M.S.: ‘Detecting acceleration for gait and crime scene analysis’. Int. Conf. on Imaging for Crime Detection and Prevention, Madrid, Spain, 2016.
    24. 24)
      • 24. Baker, S., Scharstein, D., Lewis, J.P., et al: ‘A database and evaluation methodology for optical flow’, Int. J. Comput. Vis., 2011, 92, (1), pp. 131.
    25. 25)
      • 25. Weinzaepfel, P., Revaud, J., Harchaoui, Z., et al: ‘DeepFlow: large displacement optical flow with deep matching’. Proc. IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013, pp. 13851392.
    26. 26)
      • 26. Kajita, S., Matsumoto, O., Saigo, M.: ‘Real-time 3D walking pattern generation for a biped robot with telescopic legs’. Proc. 2001 IEEE Int. Conf. on Robotics and Automation (ICRA), Seoul, South Korea, 2001, vol. 3, pp. 22992306.
    27. 27)
      • 27. Cunado, D., Nixon, M.S., Carter, J.N.: ‘Automatic extraction and description of human gait models for recognition purposes’, Comput. Vis. Image Underst., 2003, 90, (1), pp. 141.
    28. 28)
      • 28. Yu, S., Tan, T., Huang, K., et al: ‘A study on gait-based gender classification’, IEEE Trans. Image Process., 2009, 18, (8), pp. 19051910.
    29. 29)
      • 29. Wang, L., Ning, H., Tan, T., et al: ‘Fusion of static and dynamic body biometrics for gait recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 149158.
    30. 30)
      • 30. Shutler, J.D., Grant, M.G., Nixon, M.S., et al: ‘On a large sequence-based human gait database’, in Lotfi, A., Garibaldi, J. M. (Eds.): ‘Applications and Science in Soft Computing’ (Springer, Berlin, 2004), pp. 339346.
    31. 31)
      • 31. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
    32. 32)
      • 32. Bouchrika, I., Nixon, M.S.: ‘Gait-based pedestrian detection for automated surveillance’. Proc. Int. Conf. on Computer Vision Systems, Bielefeld, Germany, 2007.
    33. 33)
      • 33. Sun, D., Roth, S., Black, M.J.: ‘A quantitative analysis of current practices in optical flow estimation and the principles behind them’, Int. J. Comput. Vis., 2014, 106, (2), pp. 115137.
    34. 34)
      • 34. Fortun, D., Bouthemy, P., Kervrann, C.: ‘Optical flow modeling and computation: a survey’, Comput. Vis. Image Underst., 2015, 134, pp. 121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0429
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0429
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address