Single-camera pose estimation using mirage

Single-camera pose estimation using mirage

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, mirage pose estimation method was proposed for multi-camera systems. Multi-camera mirage analytically solves a system of linear equations for six pose parameters in O(n) time. Mirage promises to execute in real time with high accuracy and shows lower rotational and translational errors compared to eight other well-known perspective-n-points (PnP) methods. However, the simulated tests and real experiments showed that, in case of a single camera, the analytical system of linear equations is not solvable due to the reduced rank of the linear system that is obtained by the formulation. In this study, an important revision to mirage is proposed to support single camera systems properly. The results of simulations and real experiments demonstrate smaller pose estimation errors compared to a group of eight well-known state-of-the-art PnP methods.


    1. 1)
      • 1. Ahmad, A., Tipaldi, G.D., Lima, P., et al: ‘Cooperative robot localization and target tracking based on least squares minimization’. 2013 IEEE Int. Conf. Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, pp. 56965701.
    2. 2)
      • 2. Marchand, E., Uchiyama, H., Spindler, F.: ‘Pose estimation for augmented reality: A hands-on survey’, IEEE Trans. Vis. Comput. Graphics, 2016, 22, (12), pp. 26332651.
    3. 3)
      • 3. Lim, H., Lim, J., Kim, H.J.: ‘Online 3D reconstruction and 6-DoF pose estimation for RGB-D sensors’. 2014 Workshop at the European Conf. Computer Vision, Zürich, Switzerland, 2014, pp. 238254.
    4. 4)
      • 4. Ferraz, L., Binefa, X., Moreno.Noguer, F.: ‘Very fast solution to the PnP problem with algebraic outlier rejection’. 2014 Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, USA, 2014, pp. 501508.
    5. 5)
      • 5. Guo, Y.: ‘A novel solution to the P4P problem for an uncalibrated camera’, J. Math. Imaging Vis., 2013, 45, (2), pp. 186198.
    6. 6)
      • 6. Tang, J., Chen, W.S., Wang, J.: ‘A novel linear algorithm for P5P problem’, Appl. Math. Comput., 2008, 205, (2), pp. 628634.
    7. 7)
      • 7. Ansar, A., Daniilidis, K.: ‘Linear pose estimation from points or lines’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 578589.
    8. 8)
      • 8. Lepetit, V., Moreno.Noguer, F., Fua, P.: ‘EPnp: an accurate O(n) solution to the PnP problem’, Int. J. Comput. Vis., 2009, 81, (2), pp. 155166.
    9. 9)
      • 9. Dinc, S., Fahimi, F., Aygun, R.: ‘Mirage: an O(n) time analytical solution to 3D camera pose estimation with multi-camera support’, Robotica, 2017, 35, (12), pp. 22782296.
    10. 10)
      • 10. Dinc, S., Fahimi, F., Aygun, R.: ‘Vision-based trajectory tracking for mobile robots using mirage pose estimation method’, IET Comput. Vis., 2016, 10, (5), pp. 450458.
    11. 11)
      • 11. Grest, D., Petersen, T., Krüger, V.: ‘A comparison of iterative 2D-3D pose estimation methods for real-time applications’, Image Anal., 2009, 5575, pp. 706715.
    12. 12)
      • 12. Zheng, Y., Kuang, Y., Sugimoto, S., et al: ‘Revisiting the PnP problem: A fast, general and optimal solution’. Proc. 2013 IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013, pp. 23442351.
    13. 13)
      • 13. Gao, X.S., Hou, X.R., Tang, J., et al: ‘Complete solution classification for the perspective-three-point problem’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (8), pp. 930943.
    14. 14)
      • 14. Petersen, T.: ‘A comparison of 2D-3D pose estimation methods’ (Aalborg University, Aalborgb, 2008).
    15. 15)
      • 15. Zheng, Y., Sugimoto, S., Okutomi, M.: ‘Aspnp: an accurate and scalable solution to the perspective-n-point problem’, IEICE Trans. Inf. Syst., 2013, 96, (7), pp. 15251535.
    16. 16)
      • 16. Szeliski, R.: ‘Computer vision: algorithms and applications’ (Springer, London, 2010).
    17. 17)
      • 17. Dementhon, D.F., Davis, L.S.: ‘Model-based object pose in 25 lines of code’, Int. J. Comput. Vis., 1995, 15, (1), pp. 123141.
    18. 18)
      • 18. Lu, C.P., Hager, G.D., Mjolsness, E.: ‘Fast and globally convergent pose estimation from video images’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (6), pp. 610622.
    19. 19)
      • 19. Hesch, J.A., Roumeliotis, S.I.: ‘A direct least-squares (DLS) method for PnP’. 2011 IEEE Int. Conf. Computer Vision (ICCV), Barcelona, Spain, 2011, pp. 383390.
    20. 20)
      • 20. Li, S., Xu, C., Xie, M.: ‘A robust O(n) solution to the perspective-n-point problem’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 14441450.
    21. 21)
      • 21. Bouguet, J.Y.: ‘Camera calibration toolbox for MATLAB’, 2008.

Related content

This is a required field
Please enter a valid email address