access icon free Volumeter: 3D human body parameters measurement with a single Kinect

3D human body parameters measurement is a challenging task due to two main reasons: (i) it is difficult to reconstruct 3D human model due to flexible deformation of non-rigid body during images capturing process and (ii) there lies a gap between 3D model and body parameters. To address these two issues, a 3D human body parameters measurement system is represented. With the object freely spinning in front of a Kinect, body parameters are calculated. To reduce registration errors caused by body deformation while rotating, a piecewise tracking and mapping algorithm based on KinectFusion framework is proposed. Then model–model iterative closest point and non-rigid constraints are introduced to optimise alignments and disambiguate different surfaces caused by aliasing in the piecewise strategy. Finally, a novel method is presented to measure the volume and perimeter of human body with the truncated signed distance function values of voxels. Extensive experimental results show that the proposed method achieves comparable accuracy to the state of the arts, and the error of volume and perimeter measurements are 2.0 and 5.8%, respectively.

Inspec keywords: interactive devices; volume measurement; image capture; object tracking; solid modelling

Other keywords: nonrigid body flexible deformation; KinectFusion framework; nonrigid constraints; human body volume measurement; piecewise strategy; piecewise tracking; mapping algorithm; voxel truncated signed distance function values; volumeter; human body perimeter measurement; model-model iterative closest point; 3D human model; image capturing process; single Kinect; 3D human body parameters measurement

Subjects: Graphics techniques; Optical, image and video signal processing; Computer vision and image processing techniques; Interactive-input devices

References

    1. 1)
      • 16. Ge, S., Fan, G., Ding, M.: ‘Non-rigid point Set registration with global-local topology preservation’. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2014, pp. 245251.
    2. 2)
      • 10. Dimashova, M., Lysenkov, I., Rabaud, V., et al: ‘Tabletop object scanning with an RGB-D sensor’. ICRA Workshop, 2013.
    3. 3)
      • 13. Sturm, J., Bylow, E., Kahl, F., et al: ‘Copyme3d: scanning and printing persons in 3D’. German Conf. Pattern Recognition. Springer, Berlin, Heidelberg, 2013, pp. 405414.
    4. 4)
      • 23. Eggert, D.W., Lorusso, A., Fisher, R.B.: ‘Estimating 3-D rigid body transformations: a comparison of four major algorithms’, Mach. Vis. Appl., 1997, 9, (5-6), pp. 272290.
    5. 5)
      • 12. Slavcheva, M., Kehl, W., Navab, N., et al: ‘SDF-2-SDF: highly accurate 3D object reconstruction’. European Conf. Computer Vision, 2016, pp. 680696.
    6. 6)
      • 6. Bylow, E., Sturm, J., Kerl, C., et al: ‘Real-time camera tracking and 3D reconstruction using signed distance functions’, Robot. Sci. Syst., 2013, 9.
    7. 7)
      • 17. Schölkopf, B., Platt, J., Hofmann, T.: ‘Non-rigid point set registration: coherent point drift’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 32, (12), pp. 22622275.
    8. 8)
      • 14. Sumner, R.W., Schmid, J., Pauly, M.: ‘Embedded deformation for shape manipulation’. ACM SIGGRAPH, 2007, p. 80.
    9. 9)
      • 22. Parker, S., Shirley, P., Livnat, Y., et al: ‘Interactive ray tracing for isosurface rendering’. IEEE Proc. Visualization'98, 1998, pp. 233238.
    10. 10)
      • 4. Besl, P.J., McKay, N.D.: ‘A method for registration of 3-D shapes’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (2), pp. 239256.
    11. 11)
      • 9. Kehl, W., Navab, N., Ilic, S.: ‘Coloured signed distance fields for full 3D object reconstruction’. British Machine Vision Conf. (BMVC), 2014.
    12. 12)
      • 1. Lu, G., DeSouza, G.N., Armer, J., et al: ‘Comparing limb-volume measurement techniques: 3D models from an infrared depth sensor versus water displacement’. 2013 IEEE 15th Int. Conf. e-Health Networking, Applications & Services (Healthcom), 2013, pp. 685691.
    13. 13)
      • 3. Newcombe, R.A., Izadi, S., Hilliges, O., et al: ‘Kinectfusion: real-time dense surface mapping and tracking’. 2011 10th IEEE Int. Symp. Mixed and Augmented Reality (ISMAR), 2011, pp. 127136.
    14. 14)
      • 20. Davies, T., Martin, R.R.: ‘Low-discrepancy sequences for volume properties in solid modelling’. Proc. CSG, 1998, vol. 98, p. 13.
    15. 15)
      • 7. Canelhas, D.R., Stoyanov, T., Lilienthal, A.J.: ‘SDF tracker: A parallel algorithm for on-line pose estimation and scene reconstruction from depth images’. IEEE RSJ Int. Conf. Intelligent Robots and Systems (IROS), 2013, pp. 36713676.
    16. 16)
      • 15. Tong, J., Zhou, J., Liu, L., et al: ‘Scanning 3d full human bodies using kinects’, IEEE Trans. Vis. Comput. Graphics, 2012, 18, (4), pp. 643650.
    17. 17)
      • 25. Hilditch, C.: ‘Linear skeleton from square cupboards’, Mach. Intell., 1969, 6, pp. 403420.
    18. 18)
      • 11. Zhou, Q.Y., Koltun, V.: ‘Depth camera tracking with contour cues’, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp. 632638.
    19. 19)
      • 8. Rouhani, M., Sappa, A.D.: ‘The richer representation the better registration’, IEEE Trans. Image Process., 2013, 22, (12), pp. 50365049.
    20. 20)
      • 18. Li, H., Vouga, E., Gudym, A., et al: ‘3D self-portraits’, ACM Trans. Graphics (TOG), 2013, 32, (6), p. 187.
    21. 21)
      • 5. Curless, B., Levoy, M.A.: ‘Volumetric method for building complex models from range images’. Proc. 23rd Annual Conf. Computer Graphics and Interactive Techniques., 1996, pp. 303312.
    22. 22)
      • 24. Rusinkiewicz, S., Levoy, M.: ‘Efficient variants of the ICP algorithm’. IEEE Proc. Third Int. Conf. 3-D Digital Imaging and Modeling, 2001, 2001, pp. 145152.
    23. 23)
      • 2. Wan, Y., Hu, G., Dong, G.: ‘Anthropometric techniques based on kinect 3D scanning’. IEEE Proc. 2013 Int. Conf. Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013, pp. 12921296.
    24. 24)
      • 19. Ding, M., Fan, G.: ‘Articulated and generalized Gaussian Kernel correlation for human pose estimation’, IEEE Trans. Image Process., 2016, 25, (2), p. 776.
    25. 25)
      • 21. Lorensen, W.E., Cline, H.E.: ‘Marching cubes: a high resolution 3D surface construction algorithm’, ACM Siggraph Computer Graphics, 1987, 21, (4), pp. 163169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0403
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading