http://iet.metastore.ingenta.com
1887

DCA-based unimodal feature-level fusion of orthogonal moments for Indian sign language dataset

DCA-based unimodal feature-level fusion of orthogonal moments for Indian sign language dataset

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sign language recognition system classifies signs made by hand gestures. An adequate number of features are required to represent the shape variations of sign language. As compared to individual feature set, a combination of features can be effective due to the fact that a particular feature set represents different shape information. A simple concatenation results in large feature vector size and increases the classification computational complexity. Discriminant correlation analysis (DCA)-based unimodal feature-level fusion has been applied on uniform as well as complex background Indian sign language datasets. DCA is a feature-level fusion technique that takes into account the class associations while combining the feature sets. It maximises the inter-class separability of two feature sets and also minimises the intra-class separability while performing the feature fusion. The objective of DCA-based unimodal feature fusion technique is to combine different feature sets into a single feature vector with more discriminative power. The performance of proposed framework is compared with individual orthogonal moment-based feature sets and canonical correlation analysis (CCA)-based feature fusion technique. Results show that in comparison to individual features and CCA-based fused features, DCA is an effective technique in terms of improved accuracy, reduced feature vector size and smaller classification time.

References

    1. 1)
      • 1. Julka, A., Sabu, M.G.: ‘Creating a multilingual society’, J. Educ. Res. Indian Educ. Rev., 2010, 46, (1), pp. 519.
    2. 2)
      • 2. Johnson, J.E., Russell, J.: ‘Assessment of regional language varieties in Indian sign language’ (SIL International, Dallas, Texas, 2008), pp. 1121.
    3. 3)
      • 3. Kan, C., Srinath, M.D.: ‘Combined features of cubic B-spline wavelet moments and Zernike moments for invariant character recognition’. Int. Conf. Information Technology: Coding and Computing, Las Vegas, NV, 2001, pp. 511515.
    4. 4)
      • 4. Liu, S., Liu, Y., Yu, J., et al: ‘A static hand gesture recognition algorithm based on Krawtchouk moments’. Chinese Conf. Pattern Recognition, Chengdu, China, 2014, vol. 484, pp. 321330.
    5. 5)
      • 5. Thakare, R., Pathan, P.K., Lokhande, M., et al: ‘Dynamic and static gesture recognition system using moments’, Int. J. Adv. Eng. Res. Sci., 2017, 4, (2), pp. 6972.
    6. 6)
      • 6. Imad-Batioua, I., Benouini, E., Zenkouar, K., et al: ‘Image analysis using new set of separable two-dimensional discrete orthogonal moments based on Racah polynomials’, J. Image Video Proc., 2017, 20, pp. 117.
    7. 7)
      • 7. Bhuyan, M.K., Kar, M.K., Neog, D.R.: ‘Hand pose identification from monocular image for sign language recognition’. IEEE Int. Conf. Signal and Image Processing Applications, Kuala Lumpur, 2011, pp. 378383.
    8. 8)
      • 8. Rekha, J., Bhattacharya, J., Majumderand, S.: ‘Hand gesture recognition for sign language: a new hybrid approach’. Int. Conf. Image Processing, Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2011, pp. 8086.
    9. 9)
      • 9. Kishore, P.V.V., Kumar, P.R.: ‘A video based Indian sign language recognition system (INSLR) using wavelet transform and fuzzy logic’, Int. J. Eng. Technol., 2012, 4, (5), pp. 537542.
    10. 10)
      • 10. Agrawal, S.C., Jalal, A.S., Bhatnagar, C.: ‘Recognition of Indian sign language using feature fusion’. Int. Conf. Intelligent Human Computer Interaction, Kharagpur, India, 2012, pp. 15.
    11. 11)
      • 11. Singha, J., Das, K.: ‘Recognition of Indian sign language in live video’, Int. J. Comput. Appl., 2013, 70, pp. 1722.
    12. 12)
      • 12. Khurana, G., Joshi, G., Kaur, J.: ‘Static hand gestures recognition system using shape based features’. Recent Advances in Engineering and Computational Sciences, India, March 2014, pp. 14.
    13. 13)
      • 13. Tripathi, K., Baranwal, N., Nandi, G.C.: ‘Continuous Indian sign language gesture recognition and sentence formation’, Proc. Comput. Sci., 2015, 54, pp. 523531.
    14. 14)
      • 14. Kaur, B., Joshi, G.: ‘Lower order Krawtchouk moment-based feature-set for hand gesture recognition’, Adv. Human Computer Interact., 2016, 2016, pp. 110.
    15. 15)
      • 15. Kaur, B., Joshi, G., Vig, R.: ‘Identification of ISL alphabets using discrete orthogonal moments’, Wirel. Personal Commun., 2017, 94, (334), pp. 123.
    16. 16)
      • 16. Joshi, G., Vig, R., Singh, S.: ‘CFS-infogain based combined shape based feature vector for signer independent ISL database’. 6th Int. Conf. Pattern Recognition Applications and Methods, Portugal, 2017, pp. 18.
    17. 17)
      • 17. Chapelle, O.: ‘Training a support vector machine in the primal’, Neural Comput., 2007, 19, (5), pp. 11551178.
    18. 18)
      • 18. Yang, J., Yang, J., Zhang, D., et al: ‘Feature fusion: parallel strategy vs. Serial strategy’, Pattern Recognit., 2003, 36, (6), pp. 13691381.
    19. 19)
      • 19. Correa, N.M., Adali, T., Li, Y.O., et al: ‘Canonical correlation analysis for data fusion and group inferences’, IEEE Signal Process. Mag., 2010, 27, (4), pp. 3950.
    20. 20)
      • 20. Yuan, Y.H., Sun, Q.S., Zhou, Q., et al: ‘A novel multiset integrated canonical correlation analysis framework and its application in feature fusion’, Pattern Recognit., 2011, 44, (5), pp. 10311040.
    21. 21)
      • 21. Knapp, T.R.: ‘Canonical correlation analysis: a general parametric significance-testing system’, Psychol. Bull., 1978, 85, (2), pp. 410416.
    22. 22)
      • 22. Haghighat, M., Abdel-Mottaleb, M., Alhalabi, W.: ‘Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition’, IEEE Trans. Inf. Forensics Sec., 2016, 11, (9), pp. 19841996.
    23. 23)
      • 23. Sun, Q.S., Zeng, S.G., Liu, Y., et al: ‘A new method of feature fusion and its application in image recognition’, Pattern Recognit., 2005, 38, (12), pp. 24372448.
    24. 24)
      • 24. Gawande, U., Zaveri, M., Kapur, A.: ‘A novel algorithm for feature level fusion using SVM classifier for multibiometrics-based person identification’, Appl. Computat. Intell. Soft Comput., (Hindawi Publishing Corp, Cairo, 2013, pp. 112.
    25. 25)
      • 25. Ross, A., Govindarajan, R.: ‘Feature level fusion using hand and face biometrics’. SPIE Conf. Biometeric Technology for Human Identification, Orlando, 2005, vol. 5779, pp. 196204.
    26. 26)
      • 26. Dan, L., Ekenel, H.K., Jun, O.: ‘Human gesture analysis using multimodal features’. IEEE Int. Conf. Multimedia and Expo Workshops, Melbourne, Australia, 2012, pp. 471476.
    27. 27)
      • 27. Yun, L., Lifeng Shujun, Z.: ‘A hand gesture recognition method based on multi-feature fusion and template matching’, Proc. Eng., 2012, 29, pp. 16781684.
    28. 28)
      • 28. Jiang, F., Wang, C., Gao, Y., et al: ‘Discriminating features learning in hand gesture classification’, IET Comput. Vis., 2015, 9, (5), pp. 673680.
    29. 29)
      • 29. Zhu, Q.: ‘Using linear discriminant analysis to fuse bimodal biometrics traits in complex space’. Fourth Int. Conf. Computational Intelligence and Communication Networks, Mathura, India, 2012, pp.770773.
    30. 30)
      • 30. Triesch, J., Von der Malsuburg, C.: ‘A system for person-independent hand posture recognition against complex backgrounds’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (12), pp. 14491453.
    31. 31)
      • 31. Khalid, M., Hosny, : ‘A systematic method for fast computation of accurate full and subsets Zernike moments’, Inf. Sci., 2010, 180, pp. 22992313.
    32. 32)
      • 32. Mukundan, R., Lee, P.A.: ‘Image analysis by Tchebichef moments’, IEEE Trans. Image Process., 2001, 10, (9), pp. 13571364.
    33. 33)
      • 33. Pryzva, G.Y.: ‘Kravchuk orthogonal polynomials’, Ukrainian Math. J., 1992, 44, (7), pp. 792800.
    34. 34)
      • 34. Zhu, H., Shu, H.: ‘Image analysis by discrete orthogonal dual Hahn moments’, Pattern Recognition Letters, 2007, 28, (13), pp. 16881704.
    35. 35)
      • 35. Nikiforov, A.F., Uvarov, V.B.: ‘Special functions of mathematical physics’ (Springer, Berlin, 1988), pp. 253294.
    36. 36)
      • 36. Teague, M.R.: ‘Image analysis via the general theory of moments’, J. Optic Soc. Am., 1980, 70, (8), pp. 920930.
    37. 37)
      • 37. Singh, C., Walia, E., Upneja, R.: ‘Accurate calculation of Zernike moments’, Inform. Sci., 2013, 233, pp. 255275.
    38. 38)
      • 38. Joshi, G., Vig, R., Singh, S.: ‘Analysis of Zernike moment based features for sign language recognition’. Intelligent Communication, Control and Devices, India, 2017, pp. 17.
    39. 39)
      • 39. Martinez, A.M., Kak, A.C.: ‘PCA versus LDA’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (2), pp. 228233.
    40. 40)
      • 40. Just, A., Rodriguez, Y., Marcel, S.: ‘Hand posture classification and recognition using the modified census transform’. Int. Conf. Automatic Face and Gesture Recognition, 2006, pp. 351356.
    41. 41)
      • 41. Kelly, D., McDonald, J., Markham, C.: ‘A person independent system for recognition of hand postures used in sign language’, Pattern Recognit. Lett., 2010, 31, (11), pp. 13591368.
    42. 42)
      • 42. Dahmani, D., Larabi, S.: ‘User independent system for sign language finger spelling recognition’, J. Vis. Commun. Image Represent., 2014, 25, (5), pp. 12401250.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0394
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0394
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address