http://iet.metastore.ingenta.com
1887

Deep probabilistic human pose estimation

Deep probabilistic human pose estimation

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors consider the problem of human pose estimation using probabilistic convolutional neural networks. They explore ways to improve human pose estimation accuracy on standard pose estimation benchmarks MPII human pose and Leeds Sports Pose (LSP) datasets using frameworks for probabilistic deep learning. Such frameworks transform deterministic neural network into a probabilistic one and allow sampling of independent and equiprobable hypotheses (different outputs) for a given input. Overlapping body parts and body joints hidden under clothes or other obstacles make the problem of human pose estimation ambiguous. In this context to get accurate estimation of joints’ position they use uncertainty in network's predictions, which is represented by variance of hypotheses, provided by a probabilistic convolutional neural network, and confidence is characterised by mean of them. Their work is based on current CNN cascades for pose estimation. They propose and evaluate three probabilistic convolutional neural networks built on top of deterministic ones with two probabilistic deep learning frameworks – DISCO networks and Bayesian SegNet. The authors evaluate their models on standard pose estimation benchmarks and show that proposed probabilistic models outperform base deterministic ones.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0382
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0382
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address