http://iet.metastore.ingenta.com
1887

Tracking objects with co-occurrence matrix and particle filter in infrared video sequences

Tracking objects with co-occurrence matrix and particle filter in infrared video sequences

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Tracking objects in infrared video sequences became a very important challenge for many current tracking algorithms due to several complex situations such as illumination variation, night vision, and occlusion. This study proposes a new tracker that uses a set of invariant parameters calculated via the co-occurrence moments to better describe the target object. The usage of the co-occurrence moments gives the ability to exploit the information about the texture of the target to enhance the robustness of the tracking task. This latter is performed without any learning or clustering phase. The qualitative and quantitative studies on challenging sequences demonstrate that the results obtained by the proposed algorithm are very competitive in comparison to several state-of-the-art methods.

References

    1. 1)
      • 1. De-la-Torre, M., Granger, E., Sabourin, R., et al: ‘Adaptive skew-sensitive ensembles for face recognition in video surveillance’, Pattern Recognit.., 2015, 48, (11), p. pp. 33853406.
    2. 2)
      • 2. Wang, X.: ‘Intelligent multi-camera video surveillance: a review’, Pattern Recognit. Lett., 2013, 34, (1), pp. 319.
    3. 3)
      • 3. Elafi, I., Jedra, M., Zahid, N.: ‘Unsupervised detection and tracking of moving objects for video surveillance applications’, Pattern Recognit. Lett., 2016, 84, pp. 7077.
    4. 4)
      • 4. Wang, J., Zhang, L., Zhang, D., et al: ‘An adaptive longitudinal driving assistance system based on driver characteristics’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 112.
    5. 5)
      • 5. Shashua, A., Gdalyahu, Y., Hayun, G.: ‘Pedestrian detection for driving assistance systems: single-frame classification and system level performance’. IEEE Intelligent Vehicles Symp., Parma, Italy, June 2004, pp. 1–6.
    6. 6)
      • 6. Zhang, Y., Lu, H., Zhang, L., et al: ‘Video anomaly detection based on locality sensitive hashing filters’, Pattern Recognit.., 2016, 59, pp. 302311.
    7. 7)
      • 7. Forkan, A.R.M., Khalil, I., Tari, Z., et al: ‘A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living’, Pattern Recognit.., 2015, 48, (3), pp. 628641.
    8. 8)
      • 8. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), pp. 145.
    9. 9)
      • 9. Zhu, G., Porikli, F., Li, H.: ‘Beyond local search: tracking objects everywhere With instance-specific proposals’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, June. 2016.
    10. 10)
      • 10. Maresca, M.E., Petrosino, A.: ‘Clustering local motion estimates for robust and efficient object tracking’. European Conf. Computer Vision, Zurich, Switzerland, September 2014, pp. 244253.
    11. 11)
      • 11. González, A., Martín-Nieto, R., Bescós, J., et al: ‘Single object long-term tracker for smart control of a PTZ camera’. Proc. Int. Conf. Distributed Smart Cameras, Venezia Mestre, Italy, November 2014, pp. 39:139:6.
    12. 12)
      • 12. Shi, J., Tomasi, C.: ‘Good features to track’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Seatle, WA, USA, June 1994, pp. 593600.
    13. 13)
      • 13. Comaniciu, D., Ramesh, V., Meer, P.: ‘Real-time tracking of non-rigid objects using mean shift’. IEEE Conf. Computer Vision and Pattern Recognition, SC, USAJune 2000, vol. 2, pp. 142149.
    14. 14)
      • 14. Possegger, H., Mauthner, T., Bischof, H.: ‘In defense of color-based model-free tracking’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, USA, June 2015.
    15. 15)
      • 15. Akin, O., Erdem, E., Erdem, A., et al: ‘Deformable part-based tracking by coupled global and local correlation filters’, J. Vis. Commun. Image Represent., 2016, 38, pp. 763774.
    16. 16)
      • 16. Poostchi, M., Aliakbarpour, H., Viguier, R., et al: ‘Semantic depth Map fusion for moving vehicle detection in aerial video’. IEEE Computer Vision and Pattern Recognition Workshops, Las Vegas, USA, June 2016, pp. 3240.
    17. 17)
      • 17. Lebeda, K., Hadfield, S., Matas, J., et al: ‘Texture-Independent long-term tracking using virtual corners’, IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc., 2016, 25, (1), pp. 359371.
    18. 18)
      • 18. Upneja, R., Singh, C.: ‘Fast computation of jacobi-Fourier moments for invariant image recognition’, Pattern Recognit.., 2015, 48, (5), pp. 18361843.
    19. 19)
      • 19. Hwang, S.-K., Kim, W.-Y.: ‘A novel approach to the fast computation of Zernike moments’, Pattern Recognit.., 2006, 39, (11), pp. 20652076.
    20. 20)
      • 20. Tahmasbi, A., Saki, F., Shokouhi, S. B.: ‘Classification of benign and malignant masses based on Zernike moments’, Comput. Biol. Med., 2011, 41, (8), pp. 726735.
    21. 21)
      • 21. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, SMC-3, (6), pp. 610621.
    22. 22)
      • 22. Su, Y., Zhao, Q., Zhao, L., et al: ‘Abrupt motion tracking using a visual saliency embedded particle filter’, Pattern Recognit.., 2014, 47, (5), pp. 18261834.
    23. 23)
      • 23. Zhou, H., Fei, M., Sadka, A., et al: ‘Adaptive fusion of particle filtering and spatio-temporal motion energy for human tracking’, Pattern Recognit.., 2014, 47, (11), pp. 35523567.
    24. 24)
      • 24. Gustafsson, F.: ‘Particle filter theory and practice with positioning applications’, IEEE Aerosp. Electron. Syst. Mag., 2010, 25, (7), pp. 5382.
    25. 25)
      • 25. VOT Challenge’: http://www.votchallenge.net/, accessed February 2017).
    26. 26)
      • 26. Felsberg, M., Kristan, M., Matas, J., et al: ‘The thermal infrared visual object tracking VOT-TIR2016 challenge results’. Computer Vision – ECCV 2016 Workshops, Amsterdam, The Netherlands, October 2016, pp. 824849.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0359
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0359
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address