Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Precise depth map upsampling and enhancement based on edge-preserving fusion filters

A texture image plus its associated depth map is the simplest representation of a three-dimensional image and video signals and can be further encoded for effective transmission. Since it contains fewer variations, a depth map can be coded with much lower resolution than a texture image. Furthermore, the resolution of depth capture devices is usually also lower. Thus, a low-resolution depth map with possible noise requires appropriate interpolation to restore it to full resolution and remove noise. In this study, the authors propose potency guided upsampling and adaptive gradient fusion filters to enhance the erroneous depth maps. The proposed depth map enhancement system can successfully suppress noise, fill missing values, sharpen foreground objects, and smooth background regions simultaneously. Their experimental results show that the proposed methods perform better in terms of both visual and subjective metrics than the classic methods and achieve results that are visually comparable with those of some time-consuming methods.

References

    1. 1)
      • 7. Zhan, Y., Gu, Y., Huang, K., et al: ‘Accurate image-guided stereo matching with efficient matching cost and disparity refinement’, IEEE Trans. Circuits Syst. Video Technol., 2016, 26, (9), pp. 16321645.
    2. 2)
      • 19. Kopf, J., Cohen, M.F., Lischinski, D., et al: ‘Joint bilateral upsampling’, ACM Trans. Graph., 2007, 26, (3), pp. 96.
    3. 3)
      • 10. MESA Imaging. Available at http://www.mesa-imaging.ch, accessed 20th May 2016.
    4. 4)
      • 22. Jiufei, X., Ming, X., Dongxiao, L., et al: ‘A new virtual view rendering method based on depth image’. Proc. IEEE Wearable Computing Systems (APWCS) Conf., 2010, pp. 147150.
    5. 5)
      • 20. Jung, S.W.: ‘Enhancement of image and depth map using adaptive joint trilateral filter’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, pp. 258269.
    6. 6)
      • 6. Schmeing, M., Jiang, X.: ‘Faithful disocclusion filling in depth image based rendering using superpixel-based inpainting’, IEEE Trans. Multimed., 2015, 17, (12), pp. 21602173.
    7. 7)
      • 27. Zhang, J., Wang, L.H., Li, D.X., et al: ‘High quality depth maps from stereo matching and ToF camera’. Proc. IEEE Soft Computing and Pattern Recognition (SoCPaR) Conf., 2011, pp. 6872.
    8. 8)
      • 18. Wang, Y., Ortega, A., Tian, D., et al: ‘A graph-based joint bilateral approach for depth enhancement’. Proc. IEEE Speech and Signal Processing Conf., 2014, pp. 885889.
    9. 9)
      • 12. Gokturk, S.B., Yalcin, H., Bamji, C.: ‘A time-of-flight depth sensor-system description, issues and solutions’. IEEE Computer Vision and Pattern Recognition Workshop (CVPRW) Conf., 2004, p. 35.
    10. 10)
      • 13. Foix, S., Alenya, G., Torras, C.: ‘Lock-in time-of-flight (ToF) cameras: a survey’, IEEE Sens. J., 2011, 11, (9), pp. 19171926.
    11. 11)
      • 23. Yang, K., Dou, Y., Chen, X., et al: ‘Depth enhancement via non-local means filter’. Proc. IEEE Advanced Computational Intelligence Conf., 2015, pp. 126130.
    12. 12)
      • 34. Kim, K.I., Kwon, Y.: ‘Example-based learning for single-image super-resolution’. Springer Berlin Heidelberg in Joint Pattern Recognition Symp., 2008, pp. 456465.
    13. 13)
      • 33. Konno, Y., Monno, Y., Kiku, D., et al: ‘Intensity guided depth upsampling by residual interpolation’, Int. Conf. Adv. Mechatronics, 2015, 2015, (6), pp. 12.
    14. 14)
      • 28. Scharstein, D., Szeliski, R.: ‘A taxonomy and evaluation of dense two-frame stereo correspondence algorithm’, Int. J. Comput. Vis., 2002, 47, (1–3), pp. 742.
    15. 15)
      • 32. Keys, R.: ‘Cubic convolution interpolation for digital image processing’, IEEE Trans. Acoust. Speech Signal Process., 1981, 29, (6), pp. 11531160.
    16. 16)
      • 24. Gong, X., Liu, J., Zhou, W., et al: ‘Guided depth enhancement via a fast marching method’, Image Vis. Comput., 2013, 31, (10), pp. 695703.
    17. 17)
      • 8. Yang, Q.: ‘Stereo matching using tree filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (4), pp. 834846.
    18. 18)
      • 15. Choi, J., Min, D., Sohn, K.: ‘Reliability-based multiview depth enhancement considering interview coherence’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (4), pp. 603616.
    19. 19)
      • 16. Garcia, F., Aouada, D., Solignac, T., et al: ‘Real-time depth enhancement by fusion for RGB-D cameras’, IET Comput. Vis., 2013, 7, (5), pp. 111.
    20. 20)
      • 9. PMD Technologies. Available at http://www.pmdtec.com, accessed 20th May 2016.
    21. 21)
      • 25. Ford, A., Roberts, A.: ‘Color space conversions’ (Westminster University, London, 1998), pp. 131.
    22. 22)
      • 14. Gudmundsson, S.A., Aanaes, H., Larsen, R.: ‘Environmental effects on measurement uncertainties of time-of-flight cameras’. IEEE Int. Symp. Signals, Circuits and Systems, 2007, vol. 1, pp. 14.
    23. 23)
      • 26. Wang, W., Yan, J., Xu, N., et al: ‘Real-time high-quality stereo vision system in FPGA’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (10), pp. 16961708.
    24. 24)
      • 4. Lipski, C., Klose, F., Magnor, M.: ‘Correspondence and depth-image based rendering a hybrid approach for free-viewpoint video’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, pp. 942951.
    25. 25)
      • 30. Richardt, C., Stoll, C., Dodgson, N.A., et al: ‘Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos’, Comput. Graph., 2012, 31, (2), pp. 247256.
    26. 26)
      • 2. Han, Y., Yuan, Z., Muntean, G.M.: ‘An innovative no-reference metric for real-time 3D stereoscopic video quality assessment’, IEEE Trans. Broadcast., 2016, 62, (3), pp. 654663.
    27. 27)
      • 35. Buades, A., Coll, B., Morel, J.M.: ‘A non-local algorithm for image denoising’, IEEE Comput. Soc. Conf., 2005, 2, pp. 6065.
    28. 28)
      • 5. Lin, Y.H., Wu, J.L.: ‘A digital blind watermarking for depth-image-based rendering 3D image’, IEEE Trans. Broadcast., 2011, 57, pp. 602611.
    29. 29)
      • 21. Oliveira, A., Fickel, G., Walter, M., et al: ‘Selective hole-filling for depth-image based rendering’. Proc. IEEE Speech and Signal Processing (ICASSP) Conf., 2015, pp. 11861190.
    30. 30)
      • 3. Yi, H., Yuan, Z., Muntean, G.M.: ‘Extended no reference objective quality metric for stereoscopic 3D video’. Proc. IEEE Communication Workshop (ICCW) Conf., 2015.
    31. 31)
      • 31. http://resources.mpi-inf.mpg.de/rgbz-camera/ [Online] accessed 3rd February 2016.
    32. 32)
      • 36. Ndjiki-Nya, P., Koppel, M., Doshkov, D., et al: ‘Depth image-based rendering with advanced texture synthesis for 3-D video’, IEEE Trans. Multimed., 2011, 13, (3), pp. 453465.
    33. 33)
      • 17. Shen, Y., Li, J., Lu, C.: ‘Depth map enhancement method based on joint bilateral filter’. Proc. IEEE Image and Signal Processing Conf., 2014, pp. 153158.
    34. 34)
      • 1. Yang, J.-F., Ohm, J.-R.: ‘Conceptual study of potential centralized texture depth packing SEI message’. 15th Meeting: Document: JCT3V-O1004 Joint Collaborative Team on 3D Video Coding Extensions of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2016.
    35. 35)
      • 29. http://vision.middlebury.edu/stereo/data/ [Online] accessed 3rd February 2016.
    36. 36)
      • 11. Microsoft, Kinect. Available at http://www.xbox.com/en- US/kinect, accessed 20th May 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0336
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0336
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address