access icon free Variational total curvature model for multiplicative noise removal

The multiplicative noise removal problem has received considerable attention recently. To solve this problem, various variational models have been proposed, which minimise an energy functional composed of the data term and the regularisation term. Regarding the regularisation term, a first-order model is frequently used to remove multiplicative noise, which may cause staircase effect and loss of contrast in the output image. In this study, the authors use a second-order model, the total curvature (TC), to solve the above problem. The TC model has the benefit of removing the staircase effect and maintaining image edges, contrasts and corners. The augmented Lagrange method is utilised to solve the proposed TC model by introducing auxiliary variables, Lagrange multipliers and using alternating optimisation strategy. In each loop of optimisation, the fast Fourier transform, generalised soft threshold formulas, projection method and gradient descent method are integrated effectively. The experimental results show that the TC model can effectively remove staircase effect and preserve smoothness, via comparison with the first-order model (total variation regularisation and Perona–Malik regularisation). Furthermore, the TC model is better than another second-order model based on bounded Hessian regularisation in preserving contrast and corner.

Inspec keywords: fast Fourier transforms; image denoising; gradient methods; optimisation

Other keywords: second-order model; variational total curvature model; Lagrange multipliers; gradient descent method; auxiliary variables; TC model; fast Fourier transform; multiplicative noise removal problem; first-order model; projection method; alternating optimisation strategy; image denoising; augmented Lagrange method; generalised soft threshold formulas

Subjects: Integral transforms; Interpolation and function approximation (numerical analysis); Optical, image and video signal processing; Optimisation techniques; Computer vision and image processing techniques; Integral transforms; Interpolation and function approximation (numerical analysis); Optimisation techniques

References

    1. 1)
      • 5. Hu, S., Liao, Z., Chen, W.: ‘Image denoising based on dilated singularity prior’, Math. Probl. Eng., 2012, 5, (2012), pp. 243253.
    2. 2)
      • 20. Myllykoski, M., Glowinski, R., Karkkainen, T., et al: ‘A new augmented Lagrangian approach for L1-mean curvature image denoising’, SIAM J. Imaging Sci., 2015, 8, (1), pp. 95125.
    3. 3)
      • 19. Zhu, W., Tai, X., Chan, T.: ‘Augmented Lagrangian method for a mean curvature based image denoising model’, Inverse Probl. Imaging, 2017, 7, (4), pp. 14091432.
    4. 4)
      • 11. Setzer, S., Steidl, G.,, Teuber, T.: ‘Deblurring Poissonian images by split Bregman techniques’, J. Visual Commun. Image Represent., 2010, 21, pp. 193199.
    5. 5)
      • 28. Goldluecke, B., Cremers, D.: ‘Introducing total curvature for image processing’. IEEE Int. Conf. Computer Vision, Barcelona, Spain, 2011, pp. 12671274.
    6. 6)
      • 21. Tai, X.: ‘Fast numerical schemes related to curvature minimization: a brief and elementary review’. UCLA CAM Report, 2013, pp. 1440.
    7. 7)
      • 14. Huang, Y., Ng, M., Wen, Y.: ‘A new total variation method for multiplicative noise removal’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 2040.
    8. 8)
      • 25. Charbonnier, P., Blanc-Feraud, L., Aubert, G., et al: ‘Deterministic edge-preserving regularization in computed imaging’, IEEE Trans. Image Process., 1997, 6, (2), pp. 298311.
    9. 9)
      • 3. Chambolle, A.: ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vis., 2004, 20, (1-2), pp. 8997.
    10. 10)
      • 12. Denis, L., Tupin, F., Darbon, J., et al: ‘SAR image regularization with fast approximate discrete minimization’, IEEE Trans. Image Process., 2009, 18, (7), pp. 15881600.
    11. 11)
      • 24. Perona, P., Malik, J.: ‘Scale space and edge detection using anisotropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, (7), pp. 629639.
    12. 12)
      • 6. Becker, S., Bobin, J., Candes, E.: ‘A fast and accurate first-order method for sparse recovery’, SIAM J. Imaging Sci., 2011, 4, (1), pp. 139.
    13. 13)
      • 8. Durand, S., Fadili, J., Nikolova, M.: ‘Multiplicative noise removal using L1 fidelity on frame coefficients’, J. Math. Imaging Vis., 2010, 36, (3), pp. 201226.
    14. 14)
      • 9. Rudin, L., Lions, P., Osher, S.: ‘Multiplicative denoising and deblurring: theory and algorithms’, In Osher, S., Paragios, N., (Eds): ‘Geometric level sets in imaging, vision, and graphics’ (Springer, New York City, 2003), pp. 103119.
    15. 15)
      • 17. Lv, X., Le, J., Huang, J., et al: ‘A fast high-order total variation minimization method for multiplicative noise removal’, Math. Probl. Eng., 2013, 4, (1-4), pp. 87118.
    16. 16)
      • 27. Zhao, X., Wang, F., Ng, M.: ‘A new convex optimization model for multiplicative noise and blur removal’, SIAM J. Imaging Sci., 2014, 7, (1), pp. 456475.
    17. 17)
      • 18. Lu, W., Duan, J., Qiu, Z., et al: ‘Implementation of high-order variational models made easy for image processing’, Math. Methods Appl. Sci., 2016, 39, (14), pp. 42084233.
    18. 18)
      • 1. Rudin, L., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’, Physica D, 1992, 60, (1-4), pp. 259268.
    19. 19)
      • 2. Chan, T., Shen, J.: ‘Image processing and analysis: variational, PDE, wavelet, and stochastic methods’ (SIAM, Philadelphia, PA, USA, 2005).
    20. 20)
      • 13. Shi, J., Osher, S.: ‘A nonlinear inverse scale space method for a convex multiplicative noise model’, SIAM J. Imaging Sci., 2008, 1, (3), pp. 294321.
    21. 21)
      • 22. Wu, C., Tai, X.: ‘Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models’, SIAM J. Imaging Sci., 2010, 3, (3), pp. 300339.
    22. 22)
      • 15. Wang, C., Pan, Z., et al: ‘A general variational model for multiplicative noise removal and its split Bregman algorithm’. Int. Congress on Image and Signal Processing, 2010, pp. 571577.
    23. 23)
      • 4. Chan, T., Esedoglu, S., Park, F.E.: ‘Image decomposition combining staircase reduction and texture extraction’, J. Vis. Commun. Image Represent., 2007, 18, (6), pp. 464486.
    24. 24)
      • 16. Aubert, G., Kornprobst, P.: ‘Mathematical problems in image processing: partial differential equations and the calculus of variations’, Appl. Math. Sci., Appl. Intell., 2006, 40, (2), pp. 3780.
    25. 25)
      • 29. Goldstein, T., Osher, S.: ‘The split Bregman method for L1 regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
    26. 26)
      • 26. Lysaker, M., Lundervold, A., Tai, X.: ‘Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time’, IEEE Trans. Image Process., 2003, 12, (12), pp. 15791590.
    27. 27)
      • 30. Duan, J., Ward, W.O.C., Sibbett, L., et al: ‘Introducing anisotropic tensor to high order variational model for image restoration’, Digit. Signal Process., 2017, 69.
    28. 28)
      • 23. Tai, X., Hahn, J., Chung, G.: ‘A fast algorithm for Euler's elastica model using augmented Lagrangian method’, SIAM J. Imaging Sci., 2011, 4, (1), pp. 313344.
    29. 29)
      • 7. Xiao, L., Huang, L., Wei, Z.: ‘A weberized total variation regularization-based image multiplicative noise removal algorithm’, Eurasip J. Adv. Signal Process., 2010, 2010, (1), p. 490384.
    30. 30)
      • 10. Aubert, G., Aujol, J.: ‘A variational approach to remove multiplicative noise’, SIAM J. Appl. Math., 2008, 68, (4), pp. 925946.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0332
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0332
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading