http://iet.metastore.ingenta.com
1887

Dimensionality reduction by LPP-L21

Dimensionality reduction by LPP-L21

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Locality preserving projection (LPP) is one of the most representative linear manifold learning methods and well exploits intrinsic structure of data. However, the performance of LPP remarkably degenerate in the presence of outliers. To alleviate this problem, the authors propose a robust LPP, namely LPP-L21. LPP-L21 employs L2-norm as the distance metric in spatial dimension of data and L1-norm as the distance metric over different data points. Moreover, the authors employ L1-norm to construct similarity graph, this helps to improve robustness of algorithm. Accordingly, the authors present an efficient iterative algorithm to solve LPP-L21. The authors’ proposed method not only well suppresses outliers but also retains LPP's some nice properties. Experimental results on several image data sets show its advantages.

References

    1. 1)
      • 1. Turk, M.A., Pentland, A.P.: ‘Face recognition using eigenfaces’. 1991. IEEE Conf. on Computer Vision and Pattern Recognition, Proc. of Computer Vision, Hawaii, USA, 1991, pp. 586591..
    2. 2)
      • 2. He, X., Yan, S., Hu, Y., et al: ‘Face recognition using Laplacianfaces’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328340.
    3. 3)
      • 3. He, X., Yan, S., Hu, Y., et al: ‘Learning a locality preserving subspace for visual recognition’. Proc. of IEEE Int. Conf. on Computer Vision, Madison, USA, 2003, pp. 385392.
    4. 4)
      • 4. He, X., Cai, D., Yan, S., et al: ‘Neighborhood preserving embedding’. Proc. of IEEE Int. Conf. on Computer Vision, Beijing, China, 2005, vol. 1, no. 2, pp. 12081213.
    5. 5)
      • 5. He, X., Cai, D., Han, J.: ‘Learning a maximum margin subspace for image retrieval’, IEEE Trans. Knowl. Data Eng., 2008, 20, (2), pp. 189201.
    6. 6)
      • 6. Gao, Q., Liu, J., Zhang, H., et al: ‘Enhanced fisher discriminant criterion for image recognition’, Pattern Recognit., 2012, 45, (10), pp. 37173724.
    7. 7)
      • 7. Lai, Z., Wong, W.K., Xu, Y., et al: ‘Approximate orthogonal sparse embedding for dimensionality reduction’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 27, (4), pp. 723735.
    8. 8)
      • 8. Yan, S., Xu, D., Zhang, H., et al: ‘Graph embedding and extensions: a general framework for dimensionality reduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 4051.
    9. 9)
      • 9. Gao, Q., Gao, F., Zhang, H., et al: ‘Two-dimensional maximum local variation based on image Euclidean distance for face recognition’, IEEE Trans. Image Process., 2013, 22, (10), pp. 38073817.
    10. 10)
      • 10. Lin, G., Tang, N., Wang, H.: ‘Locally principal component analysis based on L1-norm maximisation’, IET Image Process., 2015, 9, (2), pp. 9196.
    11. 11)
      • 11. Lai, Z., Mo, D., Wong, W., et al: ‘Robust discriminant regression for feature extraction’, IEEE Trans. Cybern., 2018, 48, pp. 113.
    12. 12)
      • 12. Gao, Q., Ma, L., Liu, Y., et al: ‘Angle 2DPCA: a new formulation for 2DPCA’, IEEE Trans. Cybern., 2017, 49, pp. 17.
    13. 13)
      • 13. Wang, H., Wang, J.: ‘2DPCA with L1-norm for simultaneously robust and sparse modeling’, Neural Netw., 2013, 46, (10), pp. 190198.
    14. 14)
      • 14. Wang, R., Nie, F., Yang, X., et al: ‘Robust 2dpca with non-greedy l1-norm maximization for image analysis’, IEEE Trans. Cybern., 2015, 45, (5), pp. 11081112.
    15. 15)
      • 15. Ke, Q., Kanade, T.: ‘Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, USA, 2005, pp. 592599.
    16. 16)
      • 16. Kwak, N.: ‘Principal component analysis based on L1-norm maximization’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (9), pp. 16721680.
    17. 17)
      • 17. Nie, F., Wang, H., Ding, C.H., et al: ‘Robust principal component analysis with non-greedy l1-norm maximization’. Proc. Int. Joint Conf. on Artificial Intelligence, Barcelona, Spain, 2011, vol. 22, no. 1, pp. 14331438.
    18. 18)
      • 18. Markopoulos, P.P., Karystinos, G.N., Pados, D.A.: ‘Optimal algorithms for-subspace signal processing’, IEEE Trans. Signal Process., 2014, 62, (19), pp. 50465058.
    19. 19)
      • 19. Wang, Q., Gao, Q.: ‘2DPCA with F-norm minimization’. AAAI, San Francisco, USA, 2017, pp. 27182724.
    20. 20)
      • 20. Lu, G.F., Zou, J., Wang, Y.: ‘L1-norm and maximum margin criterion based discriminant locality preserving projections via trace lasso’, Pattern Recognit., 2016, 55, pp. 207214.
    21. 21)
      • 21. Zhong, F., Zhang, J.: ‘Linear discriminant analysis based on L1-norm maximization’, IEEE Trans. Image Process., 2013, 22, (8), pp. 30183027.
    22. 22)
      • 22. Liu, Y., Gao, Q., Miao, S., et al: ‘A non-greedy algorithm for L1-LDA’, IEEE Trans. Image Process., 2017, 26, (2), pp. 684695.
    23. 23)
      • 23. Wang, Q., Gao, Q., Xie, D., et al: ‘Robust DLPP with non-greedy ℓ₁-norm minimization and maximization’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 29, pp. 738743.
    24. 24)
      • 24. Pang, Y., Yuan, Y.: ‘Outlier-resisting graph embedding’, Neurocomputing, 2010, 73, (4), pp. 968974.
    25. 25)
      • 25. Ding, C., Zhou, D., He, X., et al: ‘R1-PCA: rotational invariant L1- norm principal component analysis for robust subspace factorization’. Proc. of the 23rd Int. Conf. on Machine Learning, Pittsburgh, USA, 2006, pp. 281288.
    26. 26)
      • 26. Lai, Z., Xu, Y., Yang, J., et al: ‘Rotational invariant dimensionality reduction algorithms’, IEEE Trans. Cybern., 2017, 47, (11), pp. 37333746.
    27. 27)
      • 27. Wang, Q., Gao, Q., Gao, X., et al: ‘L2,p-norm based PCA for image recognition’, IEEE Trans. Image Process., 2017, 27, pp. 13361346.
    28. 28)
      • 28. Nie, F., Huang, H., Cai, X., et al: ‘Efficient and robust feature selection via joint L2,1-norms minimization’. Advances in Neural Information Processing Systems, British Columbia, Canada, 2010, pp. 18131821.
    29. 29)
      • 29. Gui, J., Tao, D., Sun, Z., et al: ‘Group sparse multi-view patch alignment framework with view consistency for image classification’, IEEE Trans. Image Process., 2014, 23, (7), pp. 31263137.
    30. 30)
      • 30. Shi, X., Yang, Y., Guo, Z., et al: ‘Face recognition by sparse discriminant analysis via joint L2,1-norm minimization’, Pattern Recognit., 2014, 47, pp. 24472453.
    31. 31)
      • 31. Wong, W., Lai, Z., Xu, Y., et al: ‘Joint tensor feature analysis for visual object recognition’, IEEE Trans. Cybern., 2015, 45, (11), pp. 24252436.
    32. 32)
      • 32. Ding, M., Jia, W., Yao, M.: ‘A projection algorithm with local preservation based on L2 norm’, J. Xi'an Jiaotong Univ., 2016, 50, (2), pp. 3337.
    33. 33)
      • 33. Luo, M., Nie, F., Chang, X., et al: ‘Avoiding optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization’. Int. Joint Conf. on Artificial Intelligence, Melbourne, Australia, 2017, pp. 18021808.
    34. 34)
      • 34. Liao, S., Li, J., Liu, Y., et al: ‘Robust formulation for PCA: avoiding mean calculation with L2p-norm maximization’. AAAI, New Orleans, USA, 2018.
    35. 35)
      • 35. Wang, H., Yan, S., Xu, D., et al: ‘Trace ratio vs. ratio trace for dimensionality reduction’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007, pp. 18.
    36. 36)
      • 36. Georghiades, A.S., Belhumeurand, P.N., Kriegman, D.: ‘From few to many: illumination cone models for face recognition under variable lighting and pose’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 643660.
    37. 37)
      • 37. Martinez, A.M.: ‘The AR face database’. CVC Technical Report, 24, 1998.
    38. 38)
      • 38. Sim, T., Bakerand, S., Bsat, M.: ‘The CMU pose, illumination, and expression (PIE) database’. Proc. IEEE Int. Conf. Automatic Face Gesture Recognition, Washington D.C, USA, 2002, pp. 4651.
    39. 39)
      • 39. Lazebnik, S., Schmid, C., Ponce, J.: ‘Beyond bags of features: spatial pyramid matching for recognizing natural scene categories’. Proc. IEEE Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 21692178.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0302
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address