Statistical evaluation of corner detectors: does the statistical test have an effect?

Statistical evaluation of corner detectors: does the statistical test have an effect?

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study explores the use of several non-parametric statistical tests for evaluating the performances of computer vision algorithms, specifically corner detectors, as a more reliable alternative to the graphical approaches that have been commonly employed to date. Using synthetic images carrying corners of different internal angles and orientations and a carefully designed testing framework, a ranking of the performances of corner detectors was established. It was found that Harris & Stephens and SUSAN out-performed more modern detectors. These are one of the few examples where evaluation of vision operators independent of the application has predicted performance in a real-world problem. A similar exercise on real images of the same patterns produced similar results and the findings of a real-world application that uses corners to identify signage were also consistent. Together, all of the tests considered essentially perform pairwise comparisons of performance, so when many algorithms are involved it is important to take account of the potential for type I statistical errors. Several approaches were evaluated and none were found to affect the conclusions.

Related content

This is a required field
Please enter a valid email address