http://iet.metastore.ingenta.com
1887

Automatic lung segmentation based on Graph Cut using a distance-constrained energy

Automatic lung segmentation based on Graph Cut using a distance-constrained energy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Lung segmentation serves to ensure that all the parts of the lungs are considered during pulmonary image analysis by isolating the lung from the surrounding anatomy in the image. Research has shown that computed tomography (CT) images greatly improves the accuracy of the diagnosis obtained by a physician for lung cancer detection. Therefore, inspired by the success of Graph Cut in image segmentation and given that manual methods of analysing CT images are tedious and time-consuming, an automatic segmentation method based on Graph Cut is proposed which makes use of a distance-constrained energy (DCE). Graph Cut produces globally optimal solutions by modelling the image data and spatial relationship among the pixels. However, several anatomical regions in the thoracic CT image have pixel intensity values similar to the lungs, leading to results where the lung tissue and all these regions are included in the segmentation result. The global energy function is, therefore, further constrained by using the distance of pixels from a coarsely segmented region of the CT image containing the lungs. The proposed method, utilising the DCE function, shows significant improvement over using the unconstrained energy function in segmenting the lungs from the CT images using Graph Cut.

References

    1. 1)
      • 1. The National Lung Screening Trial Research Team: ‘Reduced lung-cancer mortality with low-dose computed tomographic screening’, New England J. Med., 2011, 365, (5), pp. 395409.
    2. 2)
      • 2. Self, W.H., Courtney, D.M., McNaughton, C.D., et al: ‘High discordance of chest X-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia’, Am. J. Emerg. Med., 2013, 31, (2), pp. 401405.
    3. 3)
      • 3. Tutkun, E., Abusoglu, S., Yilmaz, H., et al: ‘Farewell to an old friend: chest X-ray vs high-resolution computed tomography in welders’ lung disease’, Clin. Respir. J., 2014, 8, (2), pp. 220224.
    4. 4)
      • 4. Midthun, D.E.: ‘Early detection of lung cancer’, F1000 Faculty Rev., 2016, 5, (739), pp. 110.
    5. 5)
      • 5. World Health Organisation: ‘Cancer’ (February 2017). Available: http://www.who.int/mediacentre/factsheets/fs297/en/, accessed 6 December 2017.
    6. 6)
      • 6. Rubin, G.D.: ‘Data explosion: the challenge of multidetector-row CT’, Eur. J. Radiol., 2000, 36, (2), pp. 7480.
    7. 7)
      • 7. Traverso, A., Lopez Torres, E., Fantacci, M.E., et al: ‘Computer-aided detection systems to improve lung cancer early diagnosis: state-of-the-art and challenges’, J. Phys. Conf. Ser., 2017, 841, (012013), pp. 16.
    8. 8)
      • 8. Armato, S.G., Li, F., Giger, M.L., et al: ‘Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program’, Radiology, 2002, 225, (3), pp. 685692.
    9. 9)
      • 9. Castellino, R.A.: ‘Computer aided detection (CAD): an overview’, Cancer Imaging, 2005, 5, (1), pp. 1719.
    10. 10)
      • 10. Hirose, T., Nitta, N., Shiraishi, J., et al: ‘Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists’ diagnostic accuracy’, Acad. Radiol., 2008, 15, (12), pp. 15051512.
    11. 11)
      • 11. Chabi, M.-L., Borget, I., Ardiles, R., et al: ‘Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience’, Acad. Radiol., 2012, 19, (3), pp. 311319.
    12. 12)
      • 12. Van Ginneken, B.: ‘Computer-aided diagnosis in thoracic computed tomography’, Imaging Decis. MRI, 2008, 12, (3), pp. 1122.
    13. 13)
      • 13. Liang, M., Tang, W., Xu, D.M., et al: ‘Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers’, Radiology, 2016, 281, (1), pp. 279288.
    14. 14)
      • 14. El-Baz, A., Beache, G. M., Gimel'farb, G., et al: ‘Computer-aided diagnosis systems for lung cancer: challenges and methodologies’, Int. J. Biomed. Imaging, 2012, 2013, p. 46.
    15. 15)
      • 15. Manikandan, T.: ‘Challenges in lung cancer detection using computer-aided diagnosis (CAD) systems – a key for survival of patients’, Arch. Gen. Intern. Med., 2017, 1, (2).
    16. 16)
      • 16. Hu, S., Hoffman, E.A., Reinhardt, J.M.: ‘Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images’, IEEE Trans. Med. Imaging, 2001, 20, pp. 490498.
    17. 17)
      • 17. Antonelli, M., Lazzerini, B., Marcelloni, F.: ‘Segmentation and reconstruction of the lung volume in CT images’. Proc. 2005 ACM Symp. Applied Computing, SAC ‘05, 2005, pp. 255259.
    18. 18)
      • 18. Zhou, X., Hayashi, T., Hara, T., et al: ‘Automatic segmentation and recognition of anatomical lung structures from high–resolution chest CT images’, Comput. Med. Imaging Graph., 2006, 30, (5), pp. 299313.
    19. 19)
      • 19. Massoptier, L., Misra, A., Sowmya, A.: ‘Automatic lung segmentation in HRCT images with diffuse parenchymal lung disease using graph-cut’. 24th Int. Conf. Image and Vision Computing New Zealand, 2009, pp. 266270.
    20. 20)
      • 20. Iqbal, S., Dar, A.H.: ‘Lungs segmentation by developing binary mask’. Proc. 7th Int. Conf. Frontiers of Information Technology, FIT ‘09, 2009, pp. 75:1–75:4.
    21. 21)
      • 21. Jaffar, M.A., Hussain, A., Mirza, A.: ‘Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images’, Knowl. Inf. Syst., 2010, 24, (1), pp. 91111.
    22. 22)
      • 22. Pu, J., Paik, D. S., Meng, X., et al: ‘Shape break-and-repair strategy and its application to automated medical image segmentation’, IEEE Trans. Vis. Comput. Graphics, 2011, 17, (1), pp. 115124.
    23. 23)
      • 23. Mesanovic, N., Grgic, M., Huseinagic, H., et al: ‘Automatic CT image segmentation of the lungs with region growing algorithm’. 18th Int. Conf. Systems, Signals and Image Processing – IWSSIP 2011, 2011, pp. 395400.
    24. 24)
      • 24. Wei, Y., Shen, G., Li, J.-j.: ‘A fully automatic method for lung parenchyma segmentation and repairing’, J. Digit. Imaging, 2013, 26, (3), pp. 483495.
    25. 25)
      • 25. Shojaii, R., Alirezaie, J., Babyn, P.: ‘Automatic lung segmentation in CT images using watershed transform’, IEEE Int. Conf. Image Processing, 2005, 2 of ICIP ‘05, 2005, pp. II1270–3.
    26. 26)
      • 26. Abdollahi, B., Soliman, A., Civelek, A., et al: ‘A novel Gaussian scale space-based joint MGRF framework for precise lung segmentation’. 19th IEEE Int. Conf. Image Processing, 2012, ICIP ‘12, 2012, pp. 20292032.
    27. 27)
      • 27. Guo, Y., Zhou, C., Chan, H.-P., et al: ‘Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography’, Med. Phys., 2013, 40, (8).
    28. 28)
      • 28. Kothavari, K., Deepa, S.N.: ‘Segmentation of lung on CT images using robust active shape model (RASM) and tumour location using morphological processing’, Acad. J. Cancer Res., 2014, 7, (2), pp. 7380.
    29. 29)
      • 29. Oluyide, O., Viriri, S., Tapamo, J.-R.: ‘A two-stage fuzzy c-means clustering algorithm for lung segmentation’. Proc. 2014 PRASA, RobMech and AflaT Int. Joint Symp., 2014, pp. 4952.
    30. 30)
      • 30. Boykov, Y., Jolly, M.-P.: ‘Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images’. Proc. Eighth IEEE Int. Conf. Computer Vision, 2001, volume 1 of ICCV 2001, 2001, pp. 105112.
    31. 31)
      • 31. Boykov, Y., Funka-Lea, G.: ‘Graph Cuts and efficient N-D image segmentation’, Int. J. Comput. Vis., 2006, 70, (2), pp. 109131.
    32. 32)
      • 32. Slabaugh, G., Unal, G.: ‘Graph cuts segmentation using an elliptical shape prior’. IEEE Int. Conf. Image Processing, 2005. ICIP 2005, 2005, volume 2, pp. II1222–5.
    33. 33)
      • 33. Funka-Lea, G., Boykov, Y., Florin, C., et al: ‘Automatic heart isolation for CT coronary visualization using Graph-Cuts’. 3rd IEEE Int. Symp. Biomedical Imaging: Nano to Macro, 2006, ISBI ‘06, 2006, 2006, pp. 614617.
    34. 34)
      • 34. Nakagomi, K., Shimizu, A., Kobatake, H., et al: ‘Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume’, Med. Image Anal., 2013, 17, (1), pp. 6277.
    35. 35)
      • 35. Kleinberg, J., Tardos, E.: ‘Approximation algorithms for classification problems with pairwise relationships: metric labelling and Markov random fields’, J. ACM, 2002, 49, (5), pp. 616639.
    36. 36)
      • 36. Boykov, Y., Kolmogorov, V.: ‘An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (9), pp. 11241137.
    37. 37)
      • 37. McNitt-Gray, M.F., Armato, S.G., Meyer, C.R., et al: ‘The lung image database consortium (LIDC) data collection process for nodule detection and annotation’. Proc. SPIE Conf. Medical Imaging 2007: Computer-Aided Diagnosis, volume 6514 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, 2007, pp. 14641474.
    38. 38)
      • 38. Dolejsi, M., Kybic, J., Polovincak, M., et al: ‘The lung TIME: annotated lung nodule dataset and nodule detection framework’. Proc. SPIE Conf. Medical Imaging 2009: Computer-Aided Diagnosis, volume 7260 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, 2009.
    39. 39)
      • 39. Dice, L.R.: ‘Measures of the amount of ecologic association between species’, Ecology, 1945, 26, (3), pp. 297302.
    40. 40)
      • 40. Jaccard, P.: ‘The distribution of the flora in the Alpine Zone’, New Phytologist, 1912, 11, (2), pp. 3750.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0226
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address